高斯消元解线性方程组

本文介绍了高斯消元法解线性方程组的原理和步骤,包括初等行变换、归一化和消元过程,并讨论了无回带的高斯-约当消去法。在变换过程中,强调了原地工作的重要性,即将变换后的元素存放在原存储单元,以减少额外的空间需求。最后,阐述了解线性方程组的回带求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯消去法是消去法的一种特殊形式,它包括消元和回带两个过程。

高斯消去法求解线性方程组分为以下两大步:

1、将系数矩阵A经过一系列的初等行变换编程右上三角矩阵,其常数向量B也同时做相应的变换,即:


在变换过程中,采用原地工作,即经变换后的元素仍存放在原来的存储单元中。

为了实现上述目标,对于k从1到N-1作以下2步

(1):归一化
这一步的作用是将主对角线上的元素变为1,为此,第k行上的所用元素a[k][j](j=k+1,...N)与常数向量b[k]都要除以a[k][k].但由于变换后的元素仍存放在原来的存储单元中,因此,为了不影响第k行其他元素的变换(都要除以a[k][k])一开始没有将

a[k][k]变为1,并且最后也没有真正将a[k][k]变为1,因为a[k][k]是否真正变为1已经无关紧要了,只要在以后得变换中将a[k][k]认为是1就可以了.

(2):消元
将第k列中主对角线以下的元素消成0,为此,第i(i=k+1,...N)行的其他元素a[i][j](j=k+1,...N)与常数向量B中的元素b[i]都要减去第k行对应元素的a[i][k

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值