Redis中的数据淘汰策略

redis中的数据为什么要淘汰?
  这个很简单 是因为Redis本身的数据 是存储到了 内存中的  那么现在的问题是啥? 如果内存中的数据已经放满了
  那么怎么办呢? 这个时候数据就要实现淘汰  那么数据如何实现淘汰呢?
  
  大家想一个问题

我们的服务器 内存是不是有限的  硬件一旦确定了 这个内存 就必然有个大小

当我们 不停的向 这个内存中 写数据  知道某一天 这个内存一定会被写满  那么这个时候 就设计到 数据如何进行淘汰的问题

在Redis中 设计了多种数据的淘汰策略

# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.

noeviction:只要缓存满了、那么就不继续服务器里面的写的请求、读的请求是可以完成的、这种模式缓存里面的所有数据 都不会丢失、这种情况会导致参与Redis的业务会失败


volatile-lru:他会优先淘汰掉 设置了过期时间的这个key、然后第二步才淘汰掉使用的比较少的key 假设我们的key没有设置过期时间的话 那么不会优先淘汰
这种模式也是咋们在开发中使用的比较多的一种缓存策略模式


allkeys-lfu:和lru是有区别的、这个在淘汰的时候、淘汰的是全体key的集合、不是过期的key的集合(过期这一说法没有)、这就意味着你没有设置过期时间的key 只要使用的比较少那么依然会被淘汰


volatile-ttl:这个淘汰策略不是LRU 、而是key剩余的寿命的ttl值  ttl值越小  越先被淘汰


allkeys-random:使用这个淘汰策略的时候  淘汰的是随机的key


maxmemory-policy volatile-lru  这个就是配置缓存的淘汰策略的


maxmemory <bytes> :这个是配置Redis的缓存的大小

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

real_fxyyyyyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值