redis中的数据为什么要淘汰?
这个很简单 是因为Redis本身的数据 是存储到了 内存中的 那么现在的问题是啥? 如果内存中的数据已经放满了
那么怎么办呢? 这个时候数据就要实现淘汰 那么数据如何实现淘汰呢?
大家想一个问题
我们的服务器 内存是不是有限的 硬件一旦确定了 这个内存 就必然有个大小
当我们 不停的向 这个内存中 写数据 知道某一天 这个内存一定会被写满 那么这个时候 就设计到 数据如何进行淘汰的问题
在Redis中 设计了多种数据的淘汰策略
# volatile-lru -> Evict using approximated LRU among the keys with an expire set.
# allkeys-lru -> Evict any key using approximated LRU.
# volatile-lfu -> Evict using approximated LFU among the keys with an expire set.
# allkeys-lfu -> Evict any key using approximated LFU.
# volatile-random -> Remove a random key among the ones with an expire set.
# allkeys-random -> Remove a random key, any key.
# volatile-ttl -> Remove the key with the nearest expire time (minor TTL)
# noeviction -> Don't evict anything, just return an error on write operations.
noeviction:只要缓存满了、那么就不继续服务器里面的写的请求、读的请求是可以完成的、这种模式缓存里面的所有数据 都不会丢失、这种情况会导致参与Redis的业务会失败
volatile-lru:他会优先淘汰掉 设置了过期时间的这个key、然后第二步才淘汰掉使用的比较少的key 假设我们的key没有设置过期时间的话 那么不会优先淘汰
这种模式也是咋们在开发中使用的比较多的一种缓存策略模式
allkeys-lfu:和lru是有区别的、这个在淘汰的时候、淘汰的是全体key的集合、不是过期的key的集合(过期这一说法没有)、这就意味着你没有设置过期时间的key 只要使用的比较少那么依然会被淘汰
volatile-ttl:这个淘汰策略不是LRU 、而是key剩余的寿命的ttl值 ttl值越小 越先被淘汰
allkeys-random:使用这个淘汰策略的时候 淘汰的是随机的key
maxmemory-policy volatile-lru 这个就是配置缓存的淘汰策略的
maxmemory <bytes> :这个是配置Redis的缓存的大小