pytorch中的乘法

pytorch中的乘法

pytorch中的乘法一共有四种,有*乘,torch.multorch.mmtorch.matmul。其中*乘和torch.mul都是element-wise的乘法,也就对应元素相乘。而后两种是数学上的矩阵乘法。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

pytorch的广播机制

点积是broadcast的。broadcast是torch的一个概念,简单理解就是在一定的规则下允许高维Tensor和低维Tensor之间的运算。broadcast的概念稍显复杂,在此不做展开,可以参考官方文档关于broadcast的介绍. 在torch.matmul里会有关于broadcast的应用的一个简单的例子。

这里举一个点积broadcast的例子。在例子中,a是二维Tensor,b是三维Tensor,但是a的维度与b的后两位相同,那么a和b仍然可以做点积,点积结果是一个和b维度一样的三维Tensor,运算规则是:若c = a * b, 则c[i,*,*] = a * b[i, *, *],即沿着b的第0维做二维Tensor点积,或者可以理解为运算前将a沿着b的第0维也进行了expand操作,即a = a.expand(b.size()); a * b。

有时间专门写一下pytorch的广播机制

<think>好的,我需要帮助用户了解PyTorch中的张量乘法方法。首先,我得回忆一下PyTorch提供的几种乘法方式,比如torch.mm、torch.matmul、torch.dot、torch.mul以及运算符@和*的区别。 用户可能混淆这些方法的应用场景,所以我要分清楚每种方法的用途。例如,torch.dot只适用于一维向量,而torch.mm用于二维矩阵乘法。还有元素乘法用torch.mul或*运算符。 接下来,我需要检查引用内容。引用1提到不同乘法方法的应用,引用2和4给出了示例代码,特别是torch.dot和哈达玛积的例子。引用3介绍了张量的基本概念,可能作为背景知识。 需要确保回答结构清晰,分点说明每种方法,并给出示例代码。同时,要符合用户要求的格式:行内公式用$...$,独立公式用$$...$$,正确的中文回答,生成相关问题,并在引用处添加标识。 还要注意代码块的正确格式,比如使用三重反引号标注Python代码。最后,生成的相关问题需要与PyTorch张量乘法相关,帮助用户深入理解。 现在,组织内容: 1. 点积(torch.dot):仅一维向量,结果标量。 2. 矩阵乘法(torch.mm):二维矩阵,严格尺寸匹配。 3. 批量矩阵乘法(torch.bmm):三维张量,批量处理。 4. 张量乘法(torch.matmul):更灵活,支持广播。 5. 元素乘法(torch.mul或*):哈达玛积。 6. 运算符@和*的区别。 每个部分给出代码示例,并引用对应的引用内容。最后生成相关问题,如不同乘法应用场景、处理不同维度的张量、性能差异等。 检查是否有遗漏,比如是否提到广播机制,或者在torch.matmul中的不同维度处理。确保每个示例正确无误,比如使用正确的函数和参数。 最后,确保所有引用标识正确添加,比如引用[^1]和[^4]在相关段落末尾。同时,避免使用Markdown格式,保持自然的中文表达。</think>PyTorch中的张量乘法包含多种形式,每种方法对应不同的数学运算场景。以下是主要方法及示例说明: ### 1. **点积(torch.dot)** - **用途**:仅适用于一维向量,计算对应元素乘积之和。 - **公式**:$ \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i $ - **示例**: ```python vector1 = torch.tensor([1, 2, 3]) vector2 = torch.tensor([4, 5, 6]) print(torch.dot(vector1, vector2)) # 输出: 1*4 + 2*5 + 3*6 = 32 [^2] ``` ### 2. **矩阵乘法(torch.mm)** - **用途**:严格二维矩阵乘法,要求尺寸匹配。 - **公式**:若矩阵$A$为$m \times n$,矩阵$B$为$n \times p$,则结果矩阵$C$为$m \times p$,其中$C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$。 - **示例**: ```python matrix1 = torch.tensor([[1, 2], [3, 4]]) matrix2 = torch.tensor([[5, 6], [7, 8]]) print(torch.mm(matrix1, matrix2)) # 输出: [[19, 22], [43, 50]] ``` ### 3. **批量矩阵乘法(torch.bmm)** - **用途**:三维张量的批量乘法,适用于多个二维矩阵的并行计算。 - **示例**: ```python batch1 = torch.randn(3, 2, 4) # 3个2x4矩阵 batch2 = torch.randn(3, 4, 3) # 3个4x3矩阵 result = torch.bmm(batch1, batch2) # 输出形状为(3, 2, 3) ``` ### 4. **通用张量乘法(torch.matmul)** - **用途**:支持多维张量,自动处理广播机制,适用性最广。 - **示例**: ```python # 二维矩阵乘法 print(torch.matmul(matrix1, matrix2)) # 同torch.mm # 高维张量广播乘法 tensor1 = torch.randn(2, 3, 4) tensor2 = torch.randn(4, 5) print(torch.matmul(tensor1, tensor2).shape) # 输出: (2, 3, 5) ``` ### 5. **元素乘法(torch.mul或*)** - **用途**:哈达玛积(Hadamard product),对应元素相乘,要求张量形状一致。 - **公式**:$(A \odot B)_{ij} = A_{ij} B_{ij}$ - **示例**: ```python data1 = torch.tensor([[1, 2], [3, 4]]) data2 = torch.tensor([[5, 6], [7, 8]]) print(data1 * data2) # 输出: [[5, 12], [21, 32]] [^4] ``` ### 6. **运算符@与*的区别** - `@`等价于`torch.matmul`,用于矩阵乘法。 - `*`等价于`torch.mul`,用于元素乘法。 ```python print(matrix1 @ matrix2) # 矩阵乘法 print(matrix1 * matrix2) # 元素乘法 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值