时间与空间的相对性——思想实验推导狭义相对论(四)

一. 《光速不变原理与狭义相对论的关系》
二. 《事件发生位置的相对性》
三. 《事件同时发生的相对性》
五. 《封闭实验的对称不变性》
六. 《尺缩钟慢之动尺收缩》
七. 《尺缩钟慢之动钟变慢》


先把 《事件同时发生的相对性》 中的(结论1)搬过来:
要判断两个爆炸事件对一个参照物来说是不是同时发生的,
可以不用关心炸弹的运动状态,
只要找到这两个爆炸事件相对于该参照物的发生位置的连线中点,
再判断这两个爆炸事件发出的光是否在该中点处相遇即可。

  • 是,则这两个爆炸事件对该参照物来说是同时发生的。
  • 否,则这两个爆炸事件对该参照物来说不是同时发生的。

思想实验

假设有两条保持平行的直线轨道 r1r2 相对于彼此做匀速直线运动。

r1 上固定着一个炸弹 r1.b 和一个引爆器 r1.t,二者之间的距离 S1 不确定。
r2 上也固定着一个炸弹 r2.b 和一个引爆器 r2.t,二者之间的距离 S2 也不确定。
一条轨道上的引爆器与另一条轨道上的炸弹相遇会引爆该炸弹。
可知无论对哪条轨道来说,
两个炸弹同时爆炸,即意味着 S1S2 相等;
两个炸弹先后爆炸,即意味着 S1S2 不相等。

r1r2 的间距不变且足够小,
使得对 r1 来说 r2.b 就是在 r1.t 处爆炸的,
同样对 r2 来说 r1.b 就是在 r2.t 处爆炸的。

虽然每次实验 S1S2 都不确定,但都会保证
r1.t 先与 r2.t 相遇,后与 r2.b 相遇;
r2.t 先与 r1.t 相遇,后与 r1.b 相遇。

r1 上还固定着一个探测器 r1.d,位于 r1.tr1.b 的中点处。
r2 上也固定着一个探测器 r2.d,位于 r2.tr2.b 的中点处。
探测器可以探测到各个方向来的光,并记录下探测到的时刻。

当两个探测器都探测到 r1.b 爆炸发出的光 r1.b.lr2.b 爆炸发出的光 r2.b.l 后实验结束。

下图以 r1 为参照物展示了某一次实验:
某一次实验

图1

推导

下面一段推导没有“对于某某某来说”这样的字眼,也就是说与参照物的选择无关:

r1.b 的爆炸是 r2.t 与其相遇引发的,随着 r1.b.l 的传播,r1.br2.t 必定互相分离。
r2.b 的爆炸是 r1.t 与其相遇引发的,随着 r2.b.l 的传播,r2.br1.t 必定互相分离。
所以如果某一时刻 r1.b.lr2.b.lr1.d 处相遇的话,
那么该时刻 r1.br2.t 必定已经互相分离,r1.tr2.b 也必定已经互相分离,
可知该时刻 r1.dr2.d 必定不在一起。

这里有疑问的话可以实际验证下:
用剪刀裁出一些长短各异的纸条。
从中任选两条分开摆在一条直线上。
然后左手推着左边的纸条沿直线向右移动,右手推着右边的纸条沿直线向左移动。
在移动的过程中,两个纸条的左端一定会对齐一次,右端也一定会对齐一次。
当这两次对齐都发生过之后,再继续推动纸条看看还有可能让两个纸条的中点相遇在一起吗?

所以 r1.b.lr2.b.lr1.d 处相遇的话,那么 r1.b.lr2.b.l 必定不在 r2.d 处相遇。
同理 r1.b.lr2.b.lr2.d 处相遇的话,那么 r1.b.lr2.b.l 必定不在 r1.d 处相遇。
所以 r1.b.lr2.b.l 不可能既在 r1.d 处相遇又在 r2.d 处相遇。(结论2)

以上推导与参照物的选择无关,所以结论2与参照物的选择无关。

有了结论2,再根据结论1就可以推出:r1.br2.b 不可能既对 r1 来说是同时爆炸的又对 r2 来说是同时爆炸的。(结论3)

对爆炸的相对发生位置有疑问的话可以参考《事件发生位置的相对性》

所以时间不是绝对的。对一个参照物来说同时发生的两个事件,对其他参照物来说未必是同时发生的。

本来这篇文章打算单独推导空间的相对性,结果又把时间的相对性先给推了出来 (╯▽╰)
这次倒是只用了两条轨道,感觉比《事件同时发生的相对性》推导得还简洁一些 。

如果某一次实验发现 r1.d 同时探测到 r1.b.lr2.b.l,即 r1.b.lr2.b.lr1.d 处相遇。
那么该次实验对 r1 来说 r1.br2.b 就是同时爆炸的,所以对 r1 来说 S1S2 相等。
而根据结论3可知该次实验对 r2 来说 r1.br2.b 不是同时爆炸的,所以对 r2 来说 S1S2 不相等。

所以空间不是绝对的。对一个参照物来说相等的两个距离,对其他参照物来说未必是相等的。

下图以 r1 为参照物展示了某一次实验:
r1为参照物,对r1来说同时爆炸的实验

图2

该次实验中 r1.b.lr2.b.l 是在 r1.d 处相遇的,
所以对 r1 来说 r1.br2.b 是同时爆炸的,
所以对 r1 来说 S1S2 相等。
这些从图2中可以直观的看出来。

下图以 r2 为参照物展示了某一次实验:
r2为参照物,对r1来说同时爆炸的实验

图3

该次实验中 r1.b.lr2.b.l 也是在 r1.d 处相遇的,
所以对 r1 来说 r1.br2.b 也是同时爆炸的,
所以对 r1 来说 S1S2 也是相等的。
但图3是以 r2 为参照物展示的,
所以直观的看上去 r1.br2.b 并不是同时爆炸的,S1S2 显然也不相等。


一. 《光速不变原理与狭义相对论的关系》
二. 《事件发生位置的相对性》
三. 《事件同时发生的相对性》
五. 《封闭实验的对称不变性》
六. 《尺缩钟慢之动尺收缩》
七. 《尺缩钟慢之动钟变慢》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值