一. 《光速不变原理与狭义相对论的关系》
二. 《事件发生位置的相对性》
三. 《事件同时发生的相对性》
五. 《封闭实验的对称不变性》
六. 《尺缩钟慢之动尺收缩》
七. 《尺缩钟慢之动钟变慢》
先把 《事件同时发生的相对性》 中的(结论1)搬过来:
要判断两个爆炸事件对一个参照物来说是不是同时发生的,
可以不用关心炸弹的运动状态,
只要找到这两个爆炸事件相对于该参照物的发生位置的连线中点,
再判断这两个爆炸事件发出的光是否在该中点处相遇即可。
- 是,则这两个爆炸事件对该参照物来说是同时发生的。
- 否,则这两个爆炸事件对该参照物来说不是同时发生的。
思想实验
假设有两条保持平行的直线轨道 r1 和 r2 相对于彼此做匀速直线运动。
在 r1 上固定着一个炸弹 r1.b 和一个引爆器 r1.t,二者之间的距离 S1 不确定。
在 r2 上也固定着一个炸弹 r2.b 和一个引爆器 r2.t,二者之间的距离 S2 也不确定。
一条轨道上的引爆器与另一条轨道上的炸弹相遇会引爆该炸弹。
可知无论对哪条轨道来说,
两个炸弹同时爆炸,即意味着 S1 与 S2 相等;
两个炸弹先后爆炸,即意味着 S1 与 S2 不相等。
r1 和 r2 的间距不变且足够小,
使得对 r1 来说 r2.b 就是在 r1.t 处爆炸的,
同样对 r2 来说 r1.b 就是在 r2.t 处爆炸的。
虽然每次实验 S1 和 S2 都不确定,但都会保证
r1.t 先与 r2.t 相遇,后与 r2.b 相遇;
r2.t 先与 r1.t 相遇,后与 r1.b 相遇。
r1 上还固定着一个探测器 r1.d,位于 r1.t 与 r1.b 的中点处。
r2 上也固定着一个探测器 r2.d,位于 r2.t 与 r2.b 的中点处。
探测器可以探测到各个方向来的光,并记录下探测到的时刻。
当两个探测器都探测到 r1.b 爆炸发出的光 r1.b.l 和 r2.b 爆炸发出的光 r2.b.l 后实验结束。
下图以 r1 为参照物展示了某一次实验:
推导
下面一段推导没有“对于某某某来说”这样的字眼,也就是说与参照物的选择无关:
❝
r1.b 的爆炸是 r2.t 与其相遇引发的,随着 r1.b.l 的传播,r1.b 与 r2.t 必定互相分离。
r2.b 的爆炸是 r1.t 与其相遇引发的,随着 r2.b.l 的传播,r2.b 与 r1.t 必定互相分离。
所以如果某一时刻 r1.b.l 与 r2.b.l 在 r1.d 处相遇的话,
那么该时刻 r1.b 与 r2.t 必定已经互相分离,r1.t 与 r2.b 也必定已经互相分离,
可知该时刻 r1.d 和 r2.d 必定不在一起。
这里有疑问的话可以实际验证下:
用剪刀裁出一些长短各异的纸条。
从中任选两条分开摆在一条直线上。
然后左手推着左边的纸条沿直线向右移动,右手推着右边的纸条沿直线向左移动。
在移动的过程中,两个纸条的左端一定会对齐一次,右端也一定会对齐一次。
当这两次对齐都发生过之后,再继续推动纸条看看还有可能让两个纸条的中点相遇在一起吗?
所以 r1.b.l 与 r2.b.l 在 r1.d 处相遇的话,那么 r1.b.l 与 r2.b.l 必定不在 r2.d 处相遇。
同理 r1.b.l 与 r2.b.l 在 r2.d 处相遇的话,那么 r1.b.l 与 r2.b.l 必定不在 r1.d 处相遇。
所以 r1.b.l 与 r2.b.l 不可能既在 r1.d 处相遇又在 r2.d 处相遇。(结论2)
❞
以上推导与参照物的选择无关,所以结论2与参照物的选择无关。
有了结论2,再根据结论1就可以推出:r1.b 和 r2.b 不可能既对 r1 来说是同时爆炸的又对 r2 来说是同时爆炸的。(结论3)
对爆炸的相对发生位置有疑问的话可以参考《事件发生位置的相对性》
所以时间不是绝对的。对一个参照物来说同时发生的两个事件,对其他参照物来说未必是同时发生的。
本来这篇文章打算单独推导空间的相对性,结果又把时间的相对性先给推了出来 (╯▽╰)
这次倒是只用了两条轨道,感觉比《事件同时发生的相对性》推导得还简洁一些 。
如果某一次实验发现 r1.d 同时探测到 r1.b.l 和 r2.b.l,即 r1.b.l 与 r2.b.l 在 r1.d 处相遇。
那么该次实验对 r1 来说 r1.b 和 r2.b 就是同时爆炸的,所以对 r1 来说 S1 与 S2 相等。
而根据结论3可知该次实验对 r2 来说 r1.b 和 r2.b 不是同时爆炸的,所以对 r2 来说 S1 与 S2 不相等。
所以空间不是绝对的。对一个参照物来说相等的两个距离,对其他参照物来说未必是相等的。
下图以 r1 为参照物展示了某一次实验:
该次实验中 r1.b.l 与 r2.b.l 是在 r1.d 处相遇的,
所以对 r1 来说 r1.b 和 r2.b 是同时爆炸的,
所以对 r1 来说 S1 与 S2 相等。
这些从图2中可以直观的看出来。
下图以 r2 为参照物展示了某一次实验:
该次实验中 r1.b.l 与 r2.b.l 也是在 r1.d 处相遇的,
所以对 r1 来说 r1.b 和 r2.b 也是同时爆炸的,
所以对 r1 来说 S1 与 S2 也是相等的。
但图3是以 r2 为参照物展示的,
所以直观的看上去 r1.b 和 r2.b 并不是同时爆炸的,S1 与 S2 显然也不相等。
一. 《光速不变原理与狭义相对论的关系》
二. 《事件发生位置的相对性》
三. 《事件同时发生的相对性》
五. 《封闭实验的对称不变性》
六. 《尺缩钟慢之动尺收缩》
七. 《尺缩钟慢之动钟变慢》