hive的数据倾斜

本文探讨了Hive中数据倾斜的原因及常见场景,包括null值过多、数据类型不一致和大小表关联查询等,并提出了解决方案,如避免null值参与连接、强制执行MapJoin、合理设计分区和分桶等优化措施。
摘要由CSDN通过智能技术生成

hive的数据倾斜
主要是reduce端产生的
reducetask–0.95*datanode个数

group 如果和聚合函数一起使用,默认在map端开始combiner,不会产生数据倾斜

产生数据倾斜的根本原因就是key分配不均匀


常见场景:
一.null值过多
解决:1.null值不参与连接
select a.,b. from log a join user b on a.userid=b.userid and a.userid is not null;
2.连接的时候不加null,之后另外拼接
select a.,b. from log a join user b on a.userid=b.userid and a.userid is not null
union all
select * from log where userid is null;

union all 和union的区别
union 会去重
3.给null值加随机数,或者将null转化为随机数,相当于把null值打散了
nvl(userid,rand()) 可以给这个随机数一个范围,一个不在正常useid的范围,方便以后查询

二.参与连接的数据类型不统一
select a.,b. from log a join user b on a.userid=b.userid

log里的string类型,user里是int类型, 345+空格 转化为int就会变成null
关联的时候会将string类型转化为int类型

select a.,b. from log a join user b on cast(trim(a.userid) as int)=b

Hive数据倾斜是指在Hive中进行数据处理时,数据在不同reduce任务上分布不均匀的现象。这种情况可能导致某些reduce任务负载过重,而其他任务负载较轻。常见的数据倾斜问题包括单个key的数据量过大、空key的存在等情况。 解决Hive数据倾斜问题的方法之一是使用group by去重然后统计行数的方式,但需要注意数据倾斜问题。这种方法可以通过将数据按照某个字段进行分组,去除重复,然后统计每个组的行数来解决数据倾斜的问题。 另一种常见的数据倾斜问题是空key的存在。当两个表进行联接操作时,联接字段可能存在很多null,或者集中出现在某个特定的上。这样就会导致它们计算出的哈希相同,将它们都放到同一个reduce任务中,从而导致该任务的负载过大,而其他任务负载较轻,这也就是我们所说的数据倾斜问题。 综上所述,Hive数据倾斜是指在Hive中进行数据处理时,数据在不同reduce任务上分布不均匀的现象。解决数据倾斜的方法包括使用group by去重统计行数和处理空key的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Hive数据倾斜常见场景及解决方案(超全!!!)](https://blog.csdn.net/weixin_51981189/article/details/127419638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值