A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
Input
数据的第一行是一个T,表示有T组数据。
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
Output
对应每组数据,输出Tr(A^k)%9973。
Sample Input
2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9
Sample Output
2
2686
#include <iostream>
#include <cmath>
#include <algorithm>
#include<cstring>
#define N 10
using namespace std;
struct Mat {
int m[N][N];
};//定义一个矩阵类型
Mat mul(Mat a,Mat b) {//矩阵的乘法
Mat temp;
memset(temp.m,0,sizeof(temp));//中间变量temp全为0
for(int i=0; i<N; i++)
for(int j=0; j<N; j++)
for(int k=0; k<N; k++) {
temp.m[i][j]+=a.m[i][k]*b.m[k][j];
temp.m[i][j]%=9973;//防止中间溢出
}
return temp;
}
Mat pow(Mat a,int b) {
Mat tmp;
memset(tmp.m,0,sizeof(tmp.m));
for(int i=0; i<N; i++) {
tmp.m[i][i]=1;
} //中间矩阵tmp对角线上的值为 1
while(b) {
if(b&1)
tmp=mul(tmp,a);
a=mul(a,a);
b=b/2;
}//快速幂
return tmp;
}
int main() {
int t,n,k;
cin>>t;
while(t--) {
cin>>n>>k;
Mat e;
memset(e.m,0,sizeof(e.m));
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
cin>>e.m[i][j];
e=pow(e,k);
int sum=0;
for(int i=0; i<n; i++)
sum=(sum+e.m[i][i])%9973;
cout<<sum<<endl;
}
return 0;
}