矩阵快速幂模板

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。 

Input

数据的第一行是一个T,表示有T组数据。 
每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。 

Output

对应每组数据,输出Tr(A^k)%9973。

Sample Input

2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9

Sample Output

2
2686
#include <iostream>
#include <cmath>
#include <algorithm>
#include<cstring>
#define N 10
using namespace std;
struct Mat {
	int m[N][N];

};//定义一个矩阵类型 
Mat mul(Mat a,Mat b) {//矩阵的乘法 
	Mat temp;
	memset(temp.m,0,sizeof(temp));//中间变量temp全为0 
	for(int i=0; i<N; i++)
		for(int j=0; j<N; j++)
			for(int k=0; k<N; k++) {
				temp.m[i][j]+=a.m[i][k]*b.m[k][j];
				temp.m[i][j]%=9973;//防止中间溢出 

			}
	return temp;

}
Mat pow(Mat a,int b) {
	Mat tmp;
	memset(tmp.m,0,sizeof(tmp.m));
	for(int i=0; i<N; i++) {
		tmp.m[i][i]=1;
	}  //中间矩阵tmp对角线上的值为 1 
	while(b) {
		if(b&1)
			tmp=mul(tmp,a);
		a=mul(a,a);
		b=b/2;

	}//快速幂 
	return tmp;
}
int main() {
	int t,n,k;
	cin>>t;
	while(t--) {
		cin>>n>>k;
		Mat e;
		memset(e.m,0,sizeof(e.m));
		for(int i=0; i<n; i++)
			for(int j=0; j<n; j++)
				cin>>e.m[i][j];
		e=pow(e,k);
		int sum=0;
		for(int i=0; i<n; i++)
			sum=(sum+e.m[i][i])%9973;
		cout<<sum<<endl;

	}
	return 0;

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值