红色石头的专栏

个人网站:redstonewill.com

排序:
默认
按更新时间
按访问量

快速入门——深度学习理论解析与实战应用

1. 前言 记得是 2016 年 3 月 15 日,红色石头坐在下班的地铁上,跟往常一样,打开手机,看看新闻。突然,一条醒目的新闻吸引力我的注意:《AlphaGo 最终局战胜李世石 人机大战总比分 1:4》!虽然,我之前也知道一点 AlphaGo,但是这条新闻着实让我比较惊讶。因为,它标志着...

2018-07-11 21:01:54

阅读数:7090

评论数:45

精心整理 | 林轩田机器学习资源汇总

课程介绍 台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:《机器学习基石》和《机器学习技法》。《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非常适合。《机器学习技法》课程主要介绍了机器学习领域经典的一些算法,包括支...

2018-05-30 23:17:07

阅读数:2206

评论数:5

完结篇 | 吴恩达deeplearning.ai专项课程精炼笔记全部汇总

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 从去年8月份开始,AI界大...

2018-05-05 18:13:43

阅读数:3472

评论数:5

机器学习笔试题精选(六)

红色石头的个人网站:redstonewill.com 机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。红色石头准备在公众号连载一些机...

2018-08-08 09:23:51

阅读数:119

评论数:0

机器学习笔试题精选(五)

机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。红色石头准备在公众号连载一些机器学习笔试题系列文章,希望能够对大家有所帮助! 今天的笔试题主...

2018-07-31 09:37:32

阅读数:197

评论数:0

白话生成对抗网络 GAN,50 行代码玩转 GAN 模型!【附源码】

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 今天,红色石头带大家一起来了解...

2018-07-24 10:41:33

阅读数:195

评论数:0

机器学习笔试题精选(四)

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 机器学习是一门理论性和实战性都...

2018-07-23 09:57:02

阅读数:195

评论数:0

你应该掌握的 7 种回归模型!

线性回归和逻辑回归通常是人们学习预测模型的第一个算法。由于这二者的知名度很大,许多分析人员以为它们就是回归的唯一形式了。而了解更多的学者会知道它们是所有回归模型的主要两种形式。 事实是有很多种回归形式,每种回归都有其特定的适用场合。在这篇文章中,我将以简单的形式介绍 7 中最常见的回归模型。通过...

2018-07-19 21:26:56

阅读数:246

评论数:1

机器学习笔试题精选(三)

往期回顾: 机器学习笔试题精选(一) 机器学习笔试题精选(二) 机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。红色石头准备在公众号连载...

2018-07-17 00:03:35

阅读数:242

评论数:0

机器学习笔试题精选(二)

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 上次 机器学习笔试题精选(一)...

2018-07-12 23:18:30

阅读数:365

评论数:0

机器学习笔试题精选(一)

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 机器学习是一门理论性和实战性都...

2018-07-10 10:43:35

阅读数:630

评论数:1

通俗易懂!白话朴素贝叶斯

P(瓜熟,瓜蒂脱落)=P(瓜熟|瓜蒂脱落)⋅P(瓜蒂脱落)=P(瓜蒂脱落|瓜熟)⋅P(瓜熟)P(瓜熟,瓜蒂脱落)=P(瓜熟|瓜蒂脱落)⋅P(瓜蒂脱落)=P(瓜蒂脱落|瓜熟)⋅P(瓜熟)P(瓜熟,瓜蒂脱落)=P(瓜熟|瓜蒂脱落)\cdot P(瓜蒂脱落)=P(瓜蒂脱落|瓜熟)\cdot P(瓜熟) ...

2018-07-06 09:26:39

阅读数:455

评论数:0

机器学习中牛顿法凸优化的通俗解释

之前,我发过一篇文章,通俗地解释了梯度下降算法的数学原理和推导过程,推荐一看。链接如下: 为什么局部下降最快的方向就是梯度的负方向? 我们知道,梯度下降算法是利用梯度进行一阶优化,而今天我介绍的牛顿优化算法采用的是二阶优化。本文将重点讲解牛顿法的基本概念和推导过程,并将梯度下降与牛顿法做个比较...

2018-06-27 08:50:35

阅读数:1219

评论数:3

重磅!吴恩达深度学习又开新课啦!

说起吴恩达「Andrew Ng」,相信大家都非常熟悉了。作为人工智能的大 IP,吴恩达一直致力于人工智能的推广和普及,争取让每个人都能感受人工智能的魅力。自去年8月开始,吴恩达在 Coursera 上开设了由 5 门课组成的深度学习专项课程,掀起了一股人工智能深度学习热潮。这里附上deeplear...

2018-06-23 13:41:37

阅读数:670

评论数:0

【通俗易懂】机器学习中 L1 和 L2 正则化的直观解释

L=Ein+λ∑j|wj|L=Ein+λ∑j|wj|L=E_{in}+\lambda\sum_j |w_j| ∑jw2j≤C∑jwj2≤C\sum_jw_j^2\leq C ∇Ein∇Ein\nabla E_in ∇Ein+λw=0∇Ein+λw=0\nabla E_{in}+\la...

2018-06-21 09:08:41

阅读数:646

评论数:0

简单的交叉熵损失函数,你真的懂了吗?

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 说起交叉熵损失函数「Cross...

2018-06-19 15:56:45

阅读数:2557

评论数:4

三分钟带你对 Softmax 划重点

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 1. 什么是Softmax ...

2018-06-14 09:18:28

阅读数:4555

评论数:1

基于线性SVM的CIFAR-10图像集分类

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 之前我用了六篇文章来详细介绍了...

2018-06-12 09:49:13

阅读数:1769

评论数:4

距离产生美?k近邻算法python实现

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill) 1. 什么是k近邻算法? ...

2018-06-07 13:39:32

阅读数:1533

评论数:0

通俗解释优化的线性感知机算法:Pocket PLA

在上一篇文章: 一看就懂的感知机算法PLA 我们详细介绍了线性感知机算法模型,并使用pyhon实例,验证了PLA的实际分类效果。下图是PLA实际的分类效果: 但是,文章最后我们提出了一个疑问,就是PLA只能解决线性可分的问题。对于数据本身不是线性可分的情况,又该如何解决呢?下面,我们就将...

2018-06-04 23:44:09

阅读数:1282

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭