自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

红色石头的专栏

个人网站:redstonewill.com

  • 博客(329)
  • 资源 (2)
  • 论坛 (1)
  • 收藏
  • 关注

原创 快速入门——深度学习理论解析与实战应用

1. 前言记得是 2016 年 3 月 15 日,红色石头坐在下班的地铁上,跟往常一样,打开手机,看看新闻。突然,一条醒目的新闻吸引力我的注意:《AlphaGo 最终局战胜李世石 人机大战总比分 1:4》!虽然,我之前也知道一点 AlphaGo,但是这条新闻着实让我比较惊讶。因为,它标志着人工智能第一次在围棋领域战胜了世界大师级别的选手!机器要逆天了?!AlphaGo 是谁?Alpha...

2018-07-11 21:01:54 12661 48

原创 精心整理 | 林轩田机器学习资源汇总

课程介绍台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:《机器学习基石》和《机器学习技法》。《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非常适合。《机器学习技法》课程主要介绍了机器学习领域经典的一些算法,包括支持向量机、决策树、随机森林、神经网络等等。林老师的教学风格也很幽默风趣,总让读者在轻松愉快的氛围中掌握...

2018-05-30 23:17:07 14040 8

原创 完结篇 | 吴恩达deeplearning.ai专项课程精炼笔记全部汇总

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill)从去年8月份开始,AI界大IP吴恩达在coursera上开设了由5们课组成的深度学习专项课程,掀起了一股人工智能深度学习热潮。这...

2018-05-05 18:13:43 49505 11

原创 这可能是神经网络 LeNet-5 最详细的解释了!

大家好,我是红色石头!说起深度学习目标检测算法,就不得不提 LeNet- 5 网络。LeNet-5由LeCun等人提出于1998年提出,是一种用于手写体字符识别的非常高效的卷积神经网络。出...

2021-12-08 12:22:00 30

原创 涵盖 14 大主题!最完整的 Python 学习实例集来了!

机器学习、深度学习最简单的入门方式就是基于 Python 开始编程实战。最近闲逛 GitHub,发现了一个非常不错的 Python 学习实例集,完全是基于 Python 来实现包括 ML、...

2021-09-04 11:08:00 134

原创 详解 BackPropagation 反向传播算法!

首先介绍一下链式法则假如我们要求z对x1的偏导数,那么势必得先求z对t1的偏导数,这就是链式法则,一环扣一环BackPropagation(BP)正是基于链式法则的,接下来用简单的前向传播...

2021-08-23 11:08:00 123

原创 深入探讨!Batch 大小对训练的影响

一、概要:批训练(mini-batch)的训练方法几乎每一个深度学习的任务都在用,但是关于批训练的一些问题却仍然保留,本文通过对MNIST数据集的演示,详细讨论了batch_size对训练...

2021-08-12 11:08:00 171 1

原创 卷积神经网络(CNN)详解

章节Filter池化Demo冷知识参考CNN 一共分为输入,卷积,池化,拉直,softmax,输出卷积由互关运算(用Filter完成)和激活函数FilterCNN常用于图像识别,在深度学习...

2021-08-05 11:08:00 1240 3

原创 完全开源!快速上手 AI 理论及应用实战来了

大家好,好久没给大家推荐优质的机器学习 GitHub 开源资料了。最近逛 GitHub,发现了一个非常不错的 AI 资料,兼顾理论和实战,非常不错!首先放上该资源的 GitHub 地址:h...

2021-07-29 11:08:00 299 1

原创 完全解析!Bert & Transformer 阅读理解源码详解

接上一篇:你所不知道的 Transformer!超详细的 Bert 文本分类源码解读 | 附源码中文情感分类单标签参考论文:https://arxiv.org/abs/1706.03762...

2021-07-19 11:08:00 67

原创 从零开始带你一步一步使用 YOLOv3 测试自己的数据

上一篇:从零开始带你一步一步使用YOLOv3训练自己的数据我给大家详细介绍了如何使用 YOLOv3 模型来训练自己的数据集。训练部分完成,本文将继续给大家详细介绍如何使用我们训练好的模型...

2021-07-03 11:08:13 94

原创 从零开始带你一步一步使用YOLOv3测试自己的数据

红色石头的个人网站:redstonewill.com知乎:https://www.zhihu.com/people/red_stone_wl公众号:AI有道(redstonewill)上一篇:从零开始带你一步一步使用YOLOv3训练自己的数据我给大家详细介绍了如何使用 YOLOv3 模型来训练自己的数据集。训练部分完成,本文将继续给大家详细介绍如何使用我们训练好的模型来进行图片的批量测试。一、修改 detector.c 文件1. 替换 void test_detector 函数同样是在 .

2021-06-08 15:34:06 1161 1

原创 中文情感分类单标签

接上一篇:你所不知道的 Transformer!超详细的 Bert 文本分类源码解读 | 附源码章节背景介绍预处理完整的 GitHub 项目代码地址:https://github.com/...

2021-06-06 11:08:00 126

原创 从零开始带你一步一步使用YOLOv3训练自己的数据

红色石头的个人网站:redstonewill.comYOLOv3是比较常见和常用的深度学习目标检测(Object Dection)算法。今天给大家介绍一下如何一步一步使用YOLOv3训练自己的数据集。一、标注数据集首先我们需要使用 labelimg 工具来标注图片数据集,例如图片是 .jpg 格式的,用矩形框标注图片中的目标位置,得到 .xml 文件。这里 labelimg 的使用方法就不作介绍了,读者自行查阅。例如 100 张图片对应得到 100 个 .xml 文件:得到 .jpg 和.

2021-06-01 16:17:53 4616 20

原创 TopPaper:AI 初学者经典论文列表

无论你是学习机器学习还是深度学习,看学术论文必不可少。作为 AI 初学者而言,如何挑选更适合自己、更容易学习的 AI 论文尤为重要!真的会起到事半功倍的效果。今天给大家推荐一个非常不错的 ...

2021-05-30 11:08:00 86

原创 超详细的 Bert 文本分类源码解读 | 附源码

本文详细的GitHub地址:https://github.com/sherlcok314159/ML接上一篇:你所不知道的 Transformer!参考论文https://arxiv.or...

2021-05-23 11:08:00 268

原创 你所不知道的 Transformer!

作者 | 台运鹏这是 Transformer 系列第一篇!参考论文:https://arxiv.org/abs/1706.03762章节ReasonsSelf-AttentionMulti...

2021-05-15 11:08:00 78

原创 《algorithm-note》算法笔记中文版正式发布!

无论是做机器学习、深度学习、自然语言处理还是其它领域,算法的重要性不言而喻!吃透算法底层原理、掌握算法数学推导和代码实现,对提高自己的硬核实力来说非常重要!今天给大家推荐一个超赞的开源算法...

2021-05-08 11:08:00 300

原创 深入讨论机器学习 8 大回归模型的基本原理以及差异!

作者 | 台运鹏几乎每个机器学习从业者都知道回归,其中一些人可能认为这没什么大不了的,只是从参数之间的切 换罢了。本文将阐明每种回归算法的细节,以及确切的区别。包括 :OLSWeighte...

2021-05-02 11:08:00 1029 3

原创 ODS:输出多样化采样,有效增强白盒和黑盒攻击的性能 | NeurIPS 2020

作者 |慕苏【简介】本文提出了一种新的采样策略——输出多样化采样,替代对抗攻击方法中常用的随机采样,使得目标模型的输出尽可能多样化,以此提高白盒攻击和黑盒攻击的有效性。实验表明,该种采样...

2021-04-16 11:08:00 142

原创 一步一步教你如何将 yolov3/yolov4 转为 caffe 模型

实际工作中,目标检测 yolov3 或者 yolov4 模型移植到 AI 芯片中,经常需要将其先转换为 caffe1.x 模型,大家可能或多或少也有这方面的需求。例如华为海思 NNIE 只...

2021-03-16 11:08:00 961 1

原创 撒花!李宏毅机器学习 2021 版正式开放上线

提起李宏毅老师,熟悉机器学习的读者朋友一定不会陌生。最典型的就是开局一言不合就“宝可梦”。李宏毅老师幽默风趣的教学风格也吸引力很多机器学习爱好者。李宏毅老师的机器学习课程可以说是最具代表性...

2021-03-07 10:58:00 1191

原创 330+ 个机器学习模型/库探索工具!Papers With Code 重磅推出!

今天给大家推荐一个硬核干货:一个基于 PyTorch 的图像模型库(PyTorch Image Models,TIMM),用于最新图像分类。这个库从 330+ 种预训练的最新图像分类模型中...

2021-03-03 11:08:00 341 1

原创 吴恩达《Machine Learning》精炼笔记 12:大规模机器学习和图片文字识别 OCR

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下降...

2021-02-24 11:09:00 276

原创 吴恩达《Machine Learning》精炼笔记 11:推荐系统

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2021-01-31 10:22:00 222

原创 吴恩达《Machine Learning》精炼笔记 10:异常检测

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2021-01-23 10:22:45 151

原创 吴恩达《Machine Learning》精炼笔记 9:PCA 及其 Python 实现

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2021-01-10 00:05:00 451

原创 吴恩达《Machine Learning》精炼笔记 8:聚类 KMeans 及其 Python实现

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2021-01-02 00:11:00 652

原创 吴恩达《Machine Learning》精炼笔记 7:支持向量机 SVM

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2020-12-27 00:05:00 317

原创 吴恩达《Machine Learning》精炼笔记 6:关于机器学习的建议

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2020-12-10 10:16:00 229

原创 我的个人网站更新了!

如今,公众号【AI有道】已经陪伴读者两年多了。在这段时间里,我们一直专注于人工智能最前沿的技术、干货和资讯,努力为读者呈现最有价值的 AI 信息,致力于为读者提供切实可行的 AI 学习路...

2020-12-01 10:16:00 131

原创 利用生物视觉机制提高神经网络的对抗鲁棒性 | NeurIPS 2020

作者 |慕苏【简介】本文将两种生物视觉机制,分别是视网膜的非均匀采样机制和多种不同大小的感受野存在机制,应用到神经网络中,提高了神经网络的对抗鲁棒性。论文地址:https://arxi...

2020-11-20 10:16:00 215

原创 吴恩达《Machine Learning》精炼笔记 5:神经网络

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2020-11-13 10:16:00 776 1

原创 吴恩达《Machine Learning》精炼笔记 4:神经网络基础

作者 | Peter编辑 |AI有道今天带来第四周课程的笔记:神经网络基础。非线性假设神经元和大脑模型表示特征和直观理解多类分类问题非线性假设Non-linear Hypotheses...

2020-11-07 10:16:00 216

原创 吴恩达《Machine Learning》精炼笔记 3:回归问题和正则化

作者 | Peter编辑 |AI有道今天带来第三周课程的笔记:梯度下降与正规方程。主要讲解的内容包含:逻辑回归代价函数线性回归和逻辑回归的比较正则化问题逻辑回归分类问题假设预测的变量y...

2020-10-30 10:16:00 274

原创 吴恩达《Machine Learning》精炼笔记 2:梯度下降与正规方程

作者 | Peter编辑 |AI有道今天带来第二周课程的笔记:梯度下降与正规方程。主要内容:多维特征多变量梯度下降梯度下降法实践正规方程多维特征Multiple Features还是利...

2020-10-24 10:16:00 369

原创 吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习

作者 | Peter编辑 |AI有道0. 引言吴恩达(Andrew Ng),毫无疑问,是全球人工智能(AI)领域的大 IP!然而,吴恩达从最早的 CS229,到后来的 deeplear...

2020-10-15 10:16:00 497

原创 第01课:深度学习概述

什么是深度学习机器学习,顾名思义,是机器从数据中总结经验,找出某种规律构建模型,并用它来解决实际问题。而深度学习,是机器学习的一个重要分支和延伸,是包含多隐层的神经网络结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,从而学习到数据本身最关键的特征。简单来说,深度学习就是更深、更加复杂的神经网络结构。首先,我将通过一个例子来解释什么是神经网络。例如一个房屋价格预测问题。输入...

2020-09-22 12:01:42 912

原创 第02课:深度学习 Python 必备知识点

无论是在机器学习还是深度学习中,Python 已经成为主导性的编程语言。而且,现在许多主流的深度学习框架,例如 PyTorch、TensorFlow 也都是基于 Python。这门课主要是围绕 “理论 + 实战” 同时进行的,所以本文,我将重点介绍深度学习中 Python 的必备知识点。为什么选择 PythonPython 是一种面向对象的解释型计算机程序设计语言,由荷兰人 Guido va...

2020-09-22 12:01:40 627

原创 第03课:Anaconda 与 Jupyter Notebook

本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda 和 Jupyter Notebook。Anaconda为什么选择 Anaconda我们知道 Python 是人工智能的首选语言。为了更好、更方便地使用 Python 来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如 PyCharm 和 Anaconda。本文我推荐使用 Anaconda。之所以选择 A...

2020-09-22 12:01:39 495

Python Machine Learning

About This Book, Leverage Python' s most powerful open-source libraries for deep learning, data wrangling, and data visualization, Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms, Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets, Who This Book Is For, If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource., What You Will Learn, Explore how to use different machine learning models to ask different questions of your data, Learn how to build neural networks using Keras and Theano, Find out how to write clean and elegant Python code that will optimize the strength of your algorithms, Discover how to embed your machine learning model in a web application for increased accessibility, Predict continuous target outcomes using regression analysis, Uncover hidden patterns and structures in data with clustering, Organize data using effective pre-processing techniques, Get to grips with sentiment analysis to delve deeper into textual and social media data, Style and approach, Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

2017-06-15

三星S3C2440中文手册

此文档是三星S3C2440的中文手册,字迹清晰,内容齐全。做ARM、嵌入式必备的工具手册。

2013-05-30

红色石头Will的留言板

发表于 2020-01-02 最后回复 2020-05-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除