自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

红色石头的专栏

个人网站:redstonewill.com

  • 博客(302)
  • 资源 (2)
  • 论坛 (1)
  • 收藏
  • 关注

原创 快速入门——深度学习理论解析与实战应用

1. 前言记得是 2016 年 3 月 15 日,红色石头坐在下班的地铁上,跟往常一样,打开手机,看看新闻。突然,一条醒目的新闻吸引力我的注意:《AlphaGo 最终局战胜李世石 人机大战总比分 1:4》!虽然,我之前也知道一点 AlphaGo,但是这条新闻着实让我比较惊讶。因为,它标志着人工智能第一次在围棋领域战胜了世界大师级别的选手!机器要逆天了?!AlphaGo 是谁?Alpha...

2018-07-11 21:01:54 11719 47

原创 精心整理 | 林轩田机器学习资源汇总

课程介绍台湾大学林轩田老师曾在coursera上开设了两门机器学习经典课程:《机器学习基石》和《机器学习技法》。《机器学习基石》课程由浅入深、内容全面,基本涵盖了机器学习领域的很多方面。其作为机器学习的入门和进阶资料非常适合。《机器学习技法》课程主要介绍了机器学习领域经典的一些算法,包括支持向量机、决策树、随机森林、神经网络等等。林老师的教学风格也很幽默风趣,总让读者在轻松愉快的氛围中掌握...

2018-05-30 23:17:07 12614 8

原创 完结篇 | 吴恩达deeplearning.ai专项课程精炼笔记全部汇总

个人网站:红色石头的机器学习之路 CSDN博客:红色石头的专栏 知乎:红色石头 微博:RedstoneWill的微博 GitHub:RedstoneWill的GitHub 微信公众号:AI有道(ID:redstonewill)从去年8月份开始,AI界大IP吴恩达在coursera上开设了由5们课组成的深度学习专项课程,掀起了一股人工智能深度学习热潮。这...

2018-05-05 18:13:43 34921 8

原创 利用生物视觉机制提高神经网络的对抗鲁棒性 | NeurIPS 2020

作者 |慕苏【简介】本文将两种生物视觉机制,分别是视网膜的非均匀采样机制和多种不同大小的感受野存在机制,应用到神经网络中,提高了神经网络的对抗鲁棒性。论文地址:https://arxi...

2020-11-20 10:16:00 32

原创 吴恩达《Machine Learning》精炼笔记 5:神经网络

作者 | Peter编辑 |AI有道系列文章:吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习吴恩达《Machine Learning》精炼笔记 2:梯度下...

2020-11-13 10:16:00 198 1

原创 吴恩达《Machine Learning》精炼笔记 4:神经网络基础

作者 | Peter编辑 |AI有道今天带来第四周课程的笔记:神经网络基础。非线性假设神经元和大脑模型表示特征和直观理解多类分类问题非线性假设Non-linear Hypotheses...

2020-11-07 10:16:00 54

原创 吴恩达《Machine Learning》精炼笔记 3:回归问题和正则化

作者 | Peter编辑 |AI有道今天带来第三周课程的笔记:梯度下降与正规方程。主要讲解的内容包含:逻辑回归代价函数线性回归和逻辑回归的比较正则化问题逻辑回归分类问题假设预测的变量y...

2020-10-30 10:16:00 80

原创 吴恩达《Machine Learning》精炼笔记 2:梯度下降与正规方程

作者 | Peter编辑 |AI有道今天带来第二周课程的笔记:梯度下降与正规方程。主要内容:多维特征多变量梯度下降梯度下降法实践正规方程多维特征Multiple Features还是利...

2020-10-24 10:16:00 70

原创 吴恩达《Machine Learning》精炼笔记 1:监督学习与非监督学习

作者 | Peter编辑 |AI有道0. 引言吴恩达(Andrew Ng),毫无疑问,是全球人工智能(AI)领域的大 IP!然而,吴恩达从最早的 CS229,到后来的 deeplear...

2020-10-15 10:16:00 130

原创 第01课:深度学习概述

什么是深度学习机器学习,顾名思义,是机器从数据中总结经验,找出某种规律构建模型,并用它来解决实际问题。而深度学习,是机器学习的一个重要分支和延伸,是包含多隐层的神经网络结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,从而学习到数据本身最关键的特征。简单来说,深度学习就是更深、更加复杂的神经网络结构。首先,我将通过一个例子来解释什么是神经网络。例如一个房屋价格预测问题。输入...

2020-09-22 12:01:42 230

原创 第02课:深度学习 Python 必备知识点

无论是在机器学习还是深度学习中,Python 已经成为主导性的编程语言。而且,现在许多主流的深度学习框架,例如 PyTorch、TensorFlow 也都是基于 Python。这门课主要是围绕 “理论 + 实战” 同时进行的,所以本文,我将重点介绍深度学习中 Python 的必备知识点。为什么选择 PythonPython 是一种面向对象的解释型计算机程序设计语言,由荷兰人 Guido va...

2020-09-22 12:01:40 192

原创 第03课:Anaconda 与 Jupyter Notebook

本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda 和 Jupyter Notebook。Anaconda为什么选择 Anaconda我们知道 Python 是人工智能的首选语言。为了更好、更方便地使用 Python 来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如 PyCharm 和 Anaconda。本文我推荐使用 Anaconda。之所以选择 A...

2020-09-22 12:01:39 120

原创 第04课:深度学习框架 PyTorch

随着深度学习的研究热潮持续高涨,各种开源深度学习框架也层出不穷,包括 TensorFlow、PyTorch、Caffe2、Keras、CNTK、MXNet、Paddle、DeepLearning4、Lasagne、Neon 等等。其中,谷歌推出的 TensorFlow 无疑在关注度和用户数上都占据绝对优势,最为流行。但是,今天我将给大家介绍的却是另外一个发展与流行势头强劲的深度学习框架:PyTor...

2020-09-22 12:01:37 137

原创 第05课:神经网络基础知识

在第01课深度学习概述中,我们介绍了神经网络的基本结构,介绍了神经网络的基本单元组成是神经元。如何构建神经网络,如何训练、优化神经网络,这其中包含了许多数学原理,需要具备一些基本知识。本课,我将重点罗列并详细介绍神经网络必备的基础知识。掌握这些基础知识,你就可以很轻松地为接下来的课程做准备。由逻辑回归出发逻辑回归(Logistic Regression)是机器学习一个最基本也是最常用的算法模型...

2020-09-22 12:01:35 81

原创 第06课:浅层神经网络(NN)

上一篇我们主要介绍了一些神经网络必备的基础知识,包括 Sigmoid 激活函数、损失函数、梯度下降和计算图。这些知识对我们学习神经网络非常有用!本文我们将开始真正的神经网络学习,从一个浅层的神经网络出发,详细推导其正向传播和反向传播完整过程。神经网络模型概述首先,我们来看一个简单的神经网络模型:最简单的神经网络模型由输入层(Input Layer)、隐藏层(Hidden Layer)、输出...

2020-09-22 12:01:34 54

原创 第07课:项目实战——自己动手写一个神经网络模型

上一篇我们主要介绍了最简单的二层神经网络模型,详细推导其正向传播过程和反向传播过程,对整个神经网络的模型结构和数学理论推导过程有了清晰的认识和掌握。本文将带大家使用 Python 搭建一个神经网络模型来解决实际的分类问题。导入数据集为了简化操作,我们直接构造一批数据集。 说明:本文所有代码均在 Jupyter Notebook 中编写实现。import numpy as npimp...

2020-09-22 12:01:32 64

原创 第08课:深层神经网络(DNN)

上一篇是实战内容,我们使用 Python 一步步搭建了一个最简单的神经网络模型,只包含单层隐藏层。并使用这个简单模型对非线性可分的样本集进行分类,最终得到了不错的分类效果。本文将继续从深度神经网络入手,介绍深层神经网络的数学原理和推导过程。神经网络为什么要深?我们都知道神经网络能处理很多问题,而且效果显著。其强大能力主要源自神经网络足够“深”,也就是说网络层数越多,神经网络就更加复杂,处理数据...

2020-09-22 12:01:31 45

原创 第09课:项目实战——让你的神经网络模型越来越深

上一篇,我们主要介绍了深层神经网络模型的结构和常用的标记方法,详细推导了深层神经网络模型的正向传播和反向传播过程,并在最后介绍了多分类 Softmax 模型。本文我将带领大家通过搭建一个较深层的神经网络来解决一个猫、狗的分类问题。这是一个典型的二分类问题。输入是一张图片,我们会把 3 通道的 RGB 图片拉伸为一维数据作为神经网络的输入层。神经网络的输出层包含一个神经元,经过 Softmax 输...

2020-09-22 12:01:29 57

原创 第10课:优化神经网络——如何防止过拟合

上一篇,我们一步步搭建了一个深层的神经网络,来实现图片的分类。结果显示,随着网络层数加深,隐藏层数增加,网络性能会有所提升。但是,单纯地通过增加网络层数也不一定能取得很好的效果,且模型容易发生过拟合。本文将主要来谈谈神经网络中的过拟合问题以及如何避免过拟合。什么是过拟合任何机器学习模型,包括神经网络都可能存在过拟合(Overfit)问题。下面用一张图来说明:上图中,分别用三个模型来拟合实际...

2020-09-22 12:01:28 64

原创 第11课:优化神经网络——梯度优化

上一篇,我们主要介绍了在神经网络模型中如何防止出现过拟合问题。常用的方法是 L1、L2 正则化,Dropout 正则化,Data Augmentation,Early Stopping 等。本文将重点介绍如何使用梯度优化来使神经网络训练更快更有效率。Mini-Batch 梯度下降神经网络反向传播的过程需要使用梯度下降算法来优化网络参数,迭代更新。我们之前介绍的梯度下降算法做法是每次训练都使用全...

2020-09-22 12:01:26 38

原创 第12课:优化神经网络——网络初始化技巧与超参数调试

上一篇,我们主要介绍了神经网络中几种常见的梯度下降优化算法,包括 Mini-Batch、Momentum、Nesterov Momentum、AdaGrad、RMSprop、Adam、Learning Rate Decay ,并对各自特点进行了说明和对比。本文将重点讲解初始化神经网络的一些技巧以及如何高效进行超参数调试。网络输入标准化我们知道,神经网络的输入层是训练样本的各个特征值,而不同特征...

2020-09-22 12:01:24 71

原创 第13课:构建神经网络模型的实用建议

上一篇,我们主要介绍了优化神经网络中的一些常用技巧,包括输入标准化、权重 W 初始化、批归一化(Batch Normalization)、超参数调试等。这些技巧和方法在实际应用中非常有用,能够大大提高训练神经网络的效率。本文将介绍一些构建神经网络模型的实用建议。如何评估模型神经网络模型训练完成之后需要对其进行评估,正确地评估有助于了解模型的性能,能够帮助我们继续优化模型。如何评估模型呢?这里先...

2020-09-22 12:01:22 52

原创 第14课:项目实战——深度优化你的神经网络模型

上一篇给出了构建神经网络模型时的一些实用建议,涉及到评估模型、训练/验证/测试集、贝叶斯最优误差和人类表现水平、错误分析等内容。掌握这些知识对优化神经网络模型非常有用。本文将继续使用第9课中的项目,带领大家使用一些梯度优化技巧和正则化技术搭建一个更好的神经网络来解决猫、狗图片分类问题。这是一个典型的二分类问题。输入是一张图片,我们会把三通道的 RGB 图片拉伸为一维数据作为神经网络的输入层。神经...

2020-09-22 12:01:21 41

原创 第15课:卷积神经网络(CNN)

之前的课程中,我们介绍的都是传统神经网络结构,也称为全连接层神经网络。传统神经网络在许多应用中都有着不错的表现和性能。但是在某些领域问题中,其性能受限,表现却并不完美。因此,本文我们将讨论一种新的神经网络结构:卷积神经网络(Convolutional Neural Networks,CNN)。为什么选择 CNN在机器视觉(Computer Vision,CV)、图像识别领域,传统神经网络结构存...

2020-09-22 12:01:19 70

原创 第16课:项目实战——利用 PyTorch 构建 CNN 模型

上一篇,我们主要介绍了 CNN 的基本概念和模型结构。本文将带领大家使用 PyTorch 一步步搭建 CNN 模型,进行数字图片识别。本案例中,我们选用的是 MNIST 数据集。总的来说,我们构建分类器将按照以下步骤来做:使用 torchvision 加载 MNIST 数据集;定义一个卷积神经网络 CNN;定义损失函数;使用训练样本,训练网络;在测试样本上进行测试。MNIST 简...

2020-09-22 12:01:18 88

原创 第17课:循环神经网络(RNN)

本文将介绍另一种功能强大、应用非常广泛的神经网络模型:循环神经网络(Recurrent Neural Networks,RNN)。为什么使用 RNN生活中,我们会遇到许多序列信号,例如一段语音、一段文字、一首音乐,等等。这些序列信号都有一个共同的特点:某一点的信号跟它之前或之后的某些信号是有关系的。比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整...

2020-09-22 12:01:16 65

原创 第18课:项目实战——利用 PyTorch 构建 RNN 模型

上一篇,我们主要介绍了基本的 RNN 模型和 LSTM。本文将通过一个实战项目带大家使用 PyTorch 搭建 RNN 模型。本项目将构建一个 RNN 模型,来对 MNIST 手写数据集进行分类。可能有的读者会疑问,MNIST 数据集不是图片吗,而 RNN 是处理序列信号的。为什么图片识别也能使用 RNN 模型呢?其实,这里我们可以把图片看成是序列信号,例如下面是 MNIST 数据集的一张图片:...

2020-09-22 12:01:15 66

原创 9 大主题!机器学习算法理论面试题大汇总

机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。算法理论基础不仅包含基本概念、数学基础,也包含了机器学习、深度...

2020-09-14 10:16:00 101 1

原创 9 大主题卷积神经网络(CNN)的 PyTorch 实现

大家还记得这张图吗?之前,红色石头发文介绍过一份很不错的资源:52 个深度学习目标检测模型汇总,论文、源码一应俱全!深度系统介绍了 52 个目标检测模型,纵观 2013 年到 2020 ...

2020-08-17 10:16:00 343

原创 开源!《模式识别与机器学习(PRML)》笔记、代码、NoteBooks 发布

微软剑桥研究院实验室主任 Christopher Bishop 的经典著作《Pattern Recognition and Machine Learning》,中文译名《模式识别与机器学...

2020-08-12 10:16:00 222

原创 从零开始 Mask RCNN 实战:基于 Win10 + Anaconda 的 Mask RCNN 环境搭建

大名鼎鼎的 Mask RCNN 一举夺得 ICCV2017 Best Paper,名声大造。Mask RCNN 是何恺明基于以往的 Faster RCNN 架构提出的新的卷积网络,实现高...

2020-07-14 00:05:00 502

原创 从零开始 Mask RCNN 实战:基于 Win10 + Anaconda 的 MaskRCNN 环境搭建
原力计划

大名鼎鼎的 Mask RCNN 一举夺得 ICCV2017 Best Paper,名声大造。Mask RCNN 是何恺明基于以往的 Faster RCNN 架构提出的新的卷积网络,实现高效地检测图中的物体,并同时生成一张高质量的每个个体的分割掩码,即有效地目标的同时完成了高质量的语义分割。论文地址:https://arxiv.org/abs/1703.06870开源地址:https://github.com/matterport/Mask_RCNN本文主要介绍如何配置 Mask RCNN 的训练

2020-07-13 16:43:56 595

原创 MindSpore!这款刚刚开源的深度学习框架我爱了!

犹记得今年的华为开发者大会 HDC 2020 上,一直受人瞩目的深度学习框架 MindSpore 终于开源了。我之前一直关注 MindSpore,还是挺期待的。MindSpore 是一款...

2020-06-23 18:10:00 959

原创 周志华《机器学习》课后习题(第七章):贝叶斯分类

作者 |我是韩小琦链接 |https://zhuanlan.zhihu.com/p/517687507.1 试使用极大似然法估算回瓜数据集 3.0 中前 3 个属性的类条件概率.答:...

2020-06-03 10:16:00 2188

原创 周志华《机器学习》课后习题(第六章):支持向量机

作者 |我是韩小琦链接 |https://zhuanlan.zhihu.com/p/490231826.1 试证明样本空间中任意点到超平面的的距离为式 (6.2)。答:图中,...

2020-05-26 00:05:00 1732 1

原创 一个网站拿下机器学习优质资源!搜索效率提高 50%

\现在大家平时会遇到很多不错的机器学习资源,但是大多数情况下,资源比较分散,不方便集中管理和查阅。更重要的是往往很难找到一个系统完整的资源导航,形成系统的学习路线,方便搜索。重磅!今天小...

2020-05-21 00:05:00 252

原创 周志华《机器学习》课后习题(第五章):神经网络

作者 |我是韩小琦链接 |https://zhuanlan.zhihu.com/p/476168485.1 试述将线性函数用作神经元激活函数的缺陷。答:使用线性函数作为激活函数时...

2020-05-19 00:05:00 1913 1

原创 周志华《机器学习》课后习题解析(第四章):决策树

作者 |我是韩小琦链接 |https://zhuanlan.zhihu.com/p/446666944.1 试证明对于不含冲突数据(即特征向量完全相同但标记不同)的训练集,必存在与训...

2020-05-13 10:30:00 2059

原创 周志华《机器学习》课后习题(第三章):线性模型

作者 |我是韩小琦链接 | https://zhuanlan.zhihu.com/p/432708303.1 试分析在什么情况下,在以下式子中不比考虑偏置项b。答:在样本中有某一个...

2020-05-09 10:16:00 1490

原创 周志华机器学习课后习题解析【第二章】

作者 |我是韩小琦链接 | https://zhuanlan.zhihu.com/p/424358892.1 数据集包含 1000 个样本,其中 500 个正例、 500 个反例,将其...

2020-04-29 00:05:00 1620

三星S3C2440中文手册

此文档是三星S3C2440的中文手册,字迹清晰,内容齐全。做ARM、嵌入式必备的工具手册。

2013-05-30

Python Machine Learning

About This Book, Leverage Python' s most powerful open-source libraries for deep learning, data wrangling, and data visualization, Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms, Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets, Who This Book Is For, If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource., What You Will Learn, Explore how to use different machine learning models to ask different questions of your data, Learn how to build neural networks using Keras and Theano, Find out how to write clean and elegant Python code that will optimize the strength of your algorithms, Discover how to embed your machine learning model in a web application for increased accessibility, Predict continuous target outcomes using regression analysis, Uncover hidden patterns and structures in data with clustering, Organize data using effective pre-processing techniques, Get to grips with sentiment analysis to delve deeper into textual and social media data, Style and approach, Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

2017-06-15

红色石头Will的留言板

发表于 2020-01-02 最后回复 2020-05-25

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除