问题描述
设一个三角形的三个角为
A
A
A、
B
B
B 和
C
C
C,满足:
A
+
B
+
C
=
18
0
∘
.
A + B + C = 180^\circ.
A+B+C=180∘.
求: M = min { ∣ sin A − sin B ∣ , ∣ sin B − sin C ∣ , ∣ sin A − sin C ∣ } , M= \min \left\{ |\sin A - \sin B|, \; |\sin B - \sin C|, \; |\sin A - \sin C| \right\}, M=min{∣sinA−sinB∣,∣sinB−sinC∣,∣sinA−sinC∣},
求解过程
不失一般性,设:
sin
A
≤
sin
B
≤
sin
C
,
\sin A \leq \sin B \leq \sin C,
sinA≤sinB≤sinC, 有:
∣
sin
A
−
sin
C
∣
=
(
sin
B
−
sin
A
)
+
(
sin
C
−
sin
B
)
.
|\sin A - \sin C| = (\sin B - \sin A) + (\sin C - \sin B).
∣sinA−sinC∣=(sinB−sinA)+(sinC−sinB).
为了最大化上述最小差值,必须有:
sin
B
−
sin
A
=
sin
C
−
sin
B
=
d
.
\sin B - \sin A = \sin C - \sin B = d.
sinB−sinA=sinC−sinB=d. 此时
sin
A
\sin A
sinA、
sin
B
\sin B
sinB、
sin
C
\sin C
sinC 构成等差数列,得:
2
sin
B
=
sin
A
+
sin
C
.
2\sin B = \sin A + \sin C.
2sinB=sinA+sinC. 由于
sin
C
=
sin
(
A
+
B
)
\sin C = \sin(A + B)
sinC=sin(A+B),代入得:
2
sin
B
=
sin
A
+
sin
(
A
+
B
)
.
2\sin B = \sin A + \sin(A + B).
2sinB=sinA+sin(A+B). 利用三角恒等式:
sin
A
+
sin
(
A
+
B
)
=
2
sin
(
A
+
B
2
)
cos
B
2
,
\sin A + \sin(A+B) = 2\sin\left(A + \frac{B}{2}\right)\cos\frac{B}{2},
sinA+sin(A+B)=2sin(A+2B)cos2B,
得到:
sin
B
=
sin
(
A
+
B
2
)
cos
B
2
.
\sin B = \sin\left(A + \frac{B}{2}\right)\cos\frac{B}{2}.
sinB=sin(A+2B)cos2B.
又因为:
sin
B
=
2
sin
B
2
cos
B
2
,
\sin B = 2\sin\frac{B}{2}\cos\frac{B}{2},
sinB=2sin2Bcos2B, 消去
cos
B
2
\cos\frac{B}{2}
cos2B 后得:
2
sin
B
2
=
sin
(
A
+
B
2
)
.
2\sin\frac{B}{2} = \sin\left(A + \frac{B}{2}\right).
2sin2B=sin(A+2B). 令
x
=
B
2
x = \frac{B}{2}
x=2B,得到:
sin
(
A
+
x
)
=
2
sin
x
.
(1)
\sin(A + x) = 2\sin x. \tag{1}
sin(A+x)=2sinx.(1) 由
sin
(
A
+
x
)
≤
1
\sin(A + x) \leq 1
sin(A+x)≤1,可得:
sin
x
≤
1
2
⇒
x
∈
[
0
,
3
0
∘
]
.
\sin x \leq \frac{1}{2} \Rightarrow x \in [0, 30^\circ].
sinx≤21⇒x∈[0,30∘].
由(1)式反推:
A
=
arcsin
(
2
sin
x
)
−
x
.
A = \arcsin(2\sin x) - x.
A=arcsin(2sinx)−x.
接下来定义:
d
=
sin
B
−
sin
A
.
d = \sin B - \sin A.
d=sinB−sinA. 由
sin
B
=
2
sin
x
cos
x
\sin B = 2\sin x \cos x
sinB=2sinxcosx,
sin
A
=
2
sin
x
cos
x
−
1
−
4
sin
2
x
sin
x
.
\sin A = 2\sin x \cos x - \sqrt{1 - 4\sin^2 x} \sin x.
sinA=2sinxcosx−1−4sin2xsinx. 因此:
d
=
1
−
4
sin
2
x
⋅
sin
x
.
d = \sqrt{1 - 4\sin^2 x} \cdot \sin x.
d=1−4sin2x⋅sinx.
令:
f
(
x
)
=
sin
x
1
−
4
sin
2
x
,
x
∈
[
0
,
3
0
∘
]
,
f(x) = \sin x \sqrt{1 - 4\sin^2 x}, \quad x \in [0, 30^\circ],
f(x)=sinx1−4sin2x,x∈[0,30∘],
平方得:
f
(
x
)
2
=
sin
2
x
(
1
−
4
sin
2
x
)
.
f(x)^2 = \sin^2 x (1 - 4\sin^2 x).
f(x)2=sin2x(1−4sin2x). 令
u
=
sin
2
x
u = \sin^2 x
u=sin2x,则:
f
2
=
u
−
4
u
2
.
f^2 = u - 4u^2.
f2=u−4u2. 求导得:
g
′
(
u
)
=
1
−
8
u
=
0
⇒
u
=
1
8
.
g'(u) = 1 - 8u = 0 \Rightarrow u = \frac{1}{8}.
g′(u)=1−8u=0⇒u=81. 此时:
f
(
x
)
2
=
1
16
⇒
f
(
x
)
=
1
4
.
f(x)^2 = \frac{1}{16} \Rightarrow f(x) = \frac{1}{4}.
f(x)2=161⇒f(x)=41. 即:
d
max
=
1
4
.
d_{\max} = \frac{1}{4}.
dmax=41.
对
u
=
1
8
u = \frac{1}{8}
u=81,有:
sin
x
=
1
2
2
⇒
x
≈
20.
7
∘
.
\sin x = \frac{1}{2\sqrt{2}} \Rightarrow x \approx 20.7^\circ.
sinx=221⇒x≈20.7∘.
从而:
B
≈
41.
4
∘
,
A
≈
24.
3
∘
,
C
≈
114.
3
∘
.
B \approx 41.4^\circ, \quad A \approx 24.3^\circ, \quad C \approx 114.3^\circ.
B≈41.4∘,A≈24.3∘,C≈114.3∘.
此时三角形的最小正弦差值达到最大
应用
考虑模糊数学中关于隶属度的一个问题:已知三角形的三个内角,如何定义其为等腰三角形的“程度”?对于等腰三角形,这个“程度”应该是1,对于某种“最不等腰”的三角形,这个程度应该是0。
我们首先从角度差值出发定义与等腰三角形的相似度:
min
{
∣
A
−
B
∣
,
∣
B
−
C
∣
,
∣
A
−
C
∣
}
.
\min \left\{ |A - B|, \; |B - C|, \; |A - C| \right\}.
min{∣A−B∣,∣B−C∣,∣A−C∣}.
然后归一化为:
F
=
1
−
min
{
∣
A
−
B
∣
,
∣
B
−
C
∣
,
∣
A
−
C
∣
}
6
0
∘
.
F = 1 - \frac{\min \left\{ |A - B|, \; |B - C|, \; |A - C| \right\}}{60^\circ}.
F=1−60∘min{∣A−B∣,∣B−C∣,∣A−C∣}.
其中
6
0
∘
60^\circ
60∘是三角形中角度最小差值的最大可能值。此定义满足:等腰三角形时
F
=
1
F = 1
F=1,最不等腰时
F
=
0
F = 0
F=0。
然而,在极端情况下该定义存在问题。设一个角趋近于
δ
→
0
\delta \to 0
δ→0,另两个角为
6
0
∘
60^\circ
60∘ 和
12
0
∘
−
δ
120^\circ - \delta
120∘−δ,这时虽然两个角度的正弦值接近,对应的边长也接近,但该定义下的相似度为:
F
=
1
−
6
0
∘
−
δ
6
0
∘
→
0
,
F = 1 - \frac{60^\circ - \delta}{60^\circ} \to 0,
F=1−60∘60∘−δ→0,
这与直觉相悖。原因在于,角度极小会导致边长变化剧烈,从而角度差难以真实反映"等腰性"。
因此我们回归等腰三角形的本质定义------两边相等。根据正弦定理,边长与其对角正弦值成比例。我们改用角的正弦值定义相似度:
F
=
1
−
min
{
∣
sin
A
−
sin
B
∣
,
∣
sin
B
−
sin
C
∣
,
∣
sin
A
−
sin
C
∣
}
M
,
F = 1 - \frac{\min \left\{ |\sin A - \sin B|, \; |\sin B - \sin C|, \; |\sin A - \sin C| \right\}}{M},
F=1−Mmin{∣sinA−sinB∣,∣sinB−sinC∣,∣sinA−sinC∣},
M
M
M即为上文求解的最大值
1
4
\frac{1}{4}
41,最终的相似度函数为:
F
=
1
−
4
×
min
{
∣
sin
A
−
sin
B
∣
,
∣
sin
B
−
sin
C
∣
,
∣
sin
A
−
sin
C
∣
}
.
F = 1 - 4 \times \min \left\{ |\sin A - \sin B|, \; |\sin B - \sin C|, \; |\sin A - \sin C| \right\}.
F=1−4×min{∣sinA−sinB∣,∣sinB−sinC∣,∣sinA−sinC∣}.
其中:
-
等腰三角形: F = 1 F = 1 F=1
-
最不等腰三角形(即 B ≈ 41. 4 ∘ , A ≈ 24. 3 ∘ , C ≈ 114. 3 ∘ . B \approx 41.4^\circ, \quad A \approx 24.3^\circ, \quad C \approx 114.3^\circ. B≈41.4∘,A≈24.3∘,C≈114.3∘.): F = 0 F = 0 F=0
-
其余三角形: 0 < F < 1 0 < F < 1 0<F<1