三角形三内角的正弦值的最小差的最大值

问题描述

设一个三角形的三个角为 A A A B B B C C C,满足:
A + B + C = 18 0 ∘ . A + B + C = 180^\circ. A+B+C=180.

求: M = min ⁡ { ∣ sin ⁡ A − sin ⁡ B ∣ ,    ∣ sin ⁡ B − sin ⁡ C ∣ ,    ∣ sin ⁡ A − sin ⁡ C ∣ } , M= \min \left\{ |\sin A - \sin B|, \; |\sin B - \sin C|, \; |\sin A - \sin C| \right\}, M=min{sinAsinB,sinBsinC,sinAsinC},

求解过程

不失一般性,设: sin ⁡ A ≤ sin ⁡ B ≤ sin ⁡ C , \sin A \leq \sin B \leq \sin C, sinAsinBsinC, 有:
∣ sin ⁡ A − sin ⁡ C ∣ = ( sin ⁡ B − sin ⁡ A ) + ( sin ⁡ C − sin ⁡ B ) . |\sin A - \sin C| = (\sin B - \sin A) + (\sin C - \sin B). sinAsinC=(sinBsinA)+(sinCsinB).
为了最大化上述最小差值,必须有:
sin ⁡ B − sin ⁡ A = sin ⁡ C − sin ⁡ B = d . \sin B - \sin A = \sin C - \sin B = d. sinBsinA=sinCsinB=d. 此时 sin ⁡ A \sin A sinA sin ⁡ B \sin B sinB sin ⁡ C \sin C sinC 构成等差数列,得:
2 sin ⁡ B = sin ⁡ A + sin ⁡ C . 2\sin B = \sin A + \sin C. 2sinB=sinA+sinC. 由于 sin ⁡ C = sin ⁡ ( A + B ) \sin C = \sin(A + B) sinC=sin(A+B),代入得:
2 sin ⁡ B = sin ⁡ A + sin ⁡ ( A + B ) . 2\sin B = \sin A + \sin(A + B). 2sinB=sinA+sin(A+B). 利用三角恒等式:
sin ⁡ A + sin ⁡ ( A + B ) = 2 sin ⁡ ( A + B 2 ) cos ⁡ B 2 , \sin A + \sin(A+B) = 2\sin\left(A + \frac{B}{2}\right)\cos\frac{B}{2}, sinA+sin(A+B)=2sin(A+2B)cos2B,
得到: sin ⁡ B = sin ⁡ ( A + B 2 ) cos ⁡ B 2 . \sin B = \sin\left(A + \frac{B}{2}\right)\cos\frac{B}{2}. sinB=sin(A+2B)cos2B.
又因为: sin ⁡ B = 2 sin ⁡ B 2 cos ⁡ B 2 , \sin B = 2\sin\frac{B}{2}\cos\frac{B}{2}, sinB=2sin2Bcos2B, 消去 cos ⁡ B 2 \cos\frac{B}{2} cos2B 后得:
2 sin ⁡ B 2 = sin ⁡ ( A + B 2 ) . 2\sin\frac{B}{2} = \sin\left(A + \frac{B}{2}\right). 2sin2B=sin(A+2B). x = B 2 x = \frac{B}{2} x=2B,得到: sin ⁡ ( A + x ) = 2 sin ⁡ x . (1) \sin(A + x) = 2\sin x. \tag{1} sin(A+x)=2sinx.(1) sin ⁡ ( A + x ) ≤ 1 \sin(A + x) \leq 1 sin(A+x)1,可得:
sin ⁡ x ≤ 1 2 ⇒ x ∈ [ 0 , 3 0 ∘ ] . \sin x \leq \frac{1}{2} \Rightarrow x \in [0, 30^\circ]. sinx21x[0,30].
由(1)式反推: A = arcsin ⁡ ( 2 sin ⁡ x ) − x . A = \arcsin(2\sin x) - x. A=arcsin(2sinx)x.

接下来定义: d = sin ⁡ B − sin ⁡ A . d = \sin B - \sin A. d=sinBsinA. sin ⁡ B = 2 sin ⁡ x cos ⁡ x \sin B = 2\sin x \cos x sinB=2sinxcosx
sin ⁡ A = 2 sin ⁡ x cos ⁡ x − 1 − 4 sin ⁡ 2 x sin ⁡ x . \sin A = 2\sin x \cos x - \sqrt{1 - 4\sin^2 x} \sin x. sinA=2sinxcosx14sin2x sinx. 因此:
d = 1 − 4 sin ⁡ 2 x ⋅ sin ⁡ x . d = \sqrt{1 - 4\sin^2 x} \cdot \sin x. d=14sin2x sinx.

令: f ( x ) = sin ⁡ x 1 − 4 sin ⁡ 2 x , x ∈ [ 0 , 3 0 ∘ ] , f(x) = \sin x \sqrt{1 - 4\sin^2 x}, \quad x \in [0, 30^\circ], f(x)=sinx14sin2x ,x[0,30],
平方得: f ( x ) 2 = sin ⁡ 2 x ( 1 − 4 sin ⁡ 2 x ) . f(x)^2 = \sin^2 x (1 - 4\sin^2 x). f(x)2=sin2x(14sin2x). u = sin ⁡ 2 x u = \sin^2 x u=sin2x,则:
f 2 = u − 4 u 2 . f^2 = u - 4u^2. f2=u4u2. 求导得:
g ′ ( u ) = 1 − 8 u = 0 ⇒ u = 1 8 . g'(u) = 1 - 8u = 0 \Rightarrow u = \frac{1}{8}. g(u)=18u=0u=81. 此时:
f ( x ) 2 = 1 16 ⇒ f ( x ) = 1 4 . f(x)^2 = \frac{1}{16} \Rightarrow f(x) = \frac{1}{4}. f(x)2=161f(x)=41. 即:
d max ⁡ = 1 4 . d_{\max} = \frac{1}{4}. dmax=41.

u = 1 8 u = \frac{1}{8} u=81,有:
sin ⁡ x = 1 2 2 ⇒ x ≈ 20. 7 ∘ . \sin x = \frac{1}{2\sqrt{2}} \Rightarrow x \approx 20.7^\circ. sinx=22 1x20.7.
从而:
B ≈ 41. 4 ∘ , A ≈ 24. 3 ∘ , C ≈ 114. 3 ∘ . B \approx 41.4^\circ, \quad A \approx 24.3^\circ, \quad C \approx 114.3^\circ. B41.4,A24.3,C114.3.

此时三角形的最小正弦差值达到最大

应用

考虑模糊数学中关于隶属度的一个问题:已知三角形的三个内角,如何定义其为等腰三角形的“程度”?对于等腰三角形,这个“程度”应该是1,对于某种“最不等腰”的三角形,这个程度应该是0。

我们首先从角度差值出发定义与等腰三角形的相似度:
min ⁡ { ∣ A − B ∣ ,    ∣ B − C ∣ ,    ∣ A − C ∣ } . \min \left\{ |A - B|, \; |B - C|, \; |A - C| \right\}. min{AB,BC,AC}.
然后归一化为:
F = 1 − min ⁡ { ∣ A − B ∣ ,    ∣ B − C ∣ ,    ∣ A − C ∣ } 6 0 ∘ . F = 1 - \frac{\min \left\{ |A - B|, \; |B - C|, \; |A - C| \right\}}{60^\circ}. F=160min{AB,BC,AC}.
其中 6 0 ∘ 60^\circ 60是三角形中角度最小差值的最大可能值。此定义满足:等腰三角形时 F = 1 F = 1 F=1,最不等腰时 F = 0 F = 0 F=0

然而,在极端情况下该定义存在问题。设一个角趋近于 δ → 0 \delta \to 0 δ0,另两个角为 6 0 ∘ 60^\circ 60 12 0 ∘ − δ 120^\circ - \delta 120δ,这时虽然两个角度的正弦值接近,对应的边长也接近,但该定义下的相似度为:
F = 1 − 6 0 ∘ − δ 6 0 ∘ → 0 , F = 1 - \frac{60^\circ - \delta}{60^\circ} \to 0, F=16060δ0,
这与直觉相悖。原因在于,角度极小会导致边长变化剧烈,从而角度差难以真实反映"等腰性"。

因此我们回归等腰三角形的本质定义------两边相等。根据正弦定理,边长与其对角正弦值成比例。我们改用角的正弦值定义相似度:
F = 1 − min ⁡ { ∣ sin ⁡ A − sin ⁡ B ∣ ,    ∣ sin ⁡ B − sin ⁡ C ∣ ,    ∣ sin ⁡ A − sin ⁡ C ∣ } M , F = 1 - \frac{\min \left\{ |\sin A - \sin B|, \; |\sin B - \sin C|, \; |\sin A - \sin C| \right\}}{M}, F=1Mmin{sinAsinB,sinBsinC,sinAsinC},

M M M即为上文求解的最大值 1 4 \frac{1}{4} 41,最终的相似度函数为:
F = 1 − 4 × min ⁡ { ∣ sin ⁡ A − sin ⁡ B ∣ ,    ∣ sin ⁡ B − sin ⁡ C ∣ ,    ∣ sin ⁡ A − sin ⁡ C ∣ } . F = 1 - 4 \times \min \left\{ |\sin A - \sin B|, \; |\sin B - \sin C|, \; |\sin A - \sin C| \right\}. F=14×min{sinAsinB,sinBsinC,sinAsinC}.
其中:

  • 等腰三角形: F = 1 F = 1 F=1

  • 最不等腰三角形(即 B ≈ 41. 4 ∘ , A ≈ 24. 3 ∘ , C ≈ 114. 3 ∘ . B \approx 41.4^\circ, \quad A \approx 24.3^\circ, \quad C \approx 114.3^\circ. B41.4,A24.3,C114.3.): F = 0 F = 0 F=0

  • 其余三角形: 0 < F < 1 0 < F < 1 0<F<1

在C++中,判断个整数a、b和c是否能组成三角形以及是什么类型的三角形(锐角、钝角、直角或非三角形),需要检查两个基本原则: 1. **三角形的基本条件**:任意两边之和大于第边(即a + b > c,a + c > b,b + c > a)。 2. **角度分类**: - 如果内角都是锐角,则是锐角三角形。 - 如果有一个角是直角(90度),则是直角三角形。 - 如果有一个角是钝角(大于90度),则是钝角三角形。 你可以通过以下步骤进行判断: ```cpp #include <iostream> #include <cmath> bool is_triangle(int a, int b, int c) { if (a + b <= c || a + c <= b || b + c <= a) { // 判断是否满足基本的三角形条件 return false; } int max_side = std::max({a, b, c}); // 找到最大边 int min_side = std::min({a, b, c}); // 找到最小边 double other_side = static_cast<double>(max_side - min_side); // 计算另一个较短边 if (std::abs(std::acos(-1.0 * other_side / max_side)) >= M_PI / 2) { // 使用余弦定理检查角度,若角度为钝角 return true; // 返回钝角三角形 } else { double angle_a = std::acos(other_side / max_side); double angle_b = std::acos(other_side / max_side); if (angle_a == angle_b) { // 直角三角形,因为对称 return true; } // 非对称情况,计算并比较其他角度 double angle_c = M_PI - angle_a - angle_b; return angle_c < M_PI / 2 && angle_c > 0; // 锐角三角形 } } int main() { int a, b, c; std::cout << "请输入个整数 (a, b, c): "; std::cin >> a >> b >> c; bool result = is_triangle(a, b, c); if (result) { switch (true) { case is_triangle(a, b, c) && is_triangle(b, c, a) && is_triangle(c, a, b): std::cout << "这是一组有效的三角形,可能是锐角、直角或钝角三角形。"; break; case is_triangle(a, b, c) && is_triangle(b, c, a) && !is_triangle(c, a, b): std::cout << "这是直角三角形 (" << a << ", " << b << ", " << c << ")"; break; default: std::cout << "这是钝角三角形 (" << a << ", " << b << ", " << c << ")"; break; } } else { std::cout << "这不是一组有效的三角形。"; } return 0; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值