对于任意给定的实数 x , y , z x, y, z x,y,z,
- x ≤ x x \leq x x≤x.
- 若 x ≤ y x \leq y x≤y 且 y ≤ x , y \leq x, y≤x, 则 x = y x=y x=y.
- 若 x ≤ y x \leq y x≤y 且 y ≤ z , y \leq z, y≤z, 则 x ≤ z x \leq z x≤z
- 不是 x ≤ y x \leq y x≤y 就是 y ≤ x y \leq x y≤x.
- 若 x ≤ y , x \leq y, x≤y, 则 x + z ≤ y + z x+z \leq y+z x+z≤y+z.
- 若 x ≤ y x \leq y x≤y 且 0 ≤ z , 0 \leq z, 0≤z, 则 x ⋅ z ≤ y ⋅ z x \cdot z \leq y \cdot z x⋅z≤y⋅z.
- x + ( y + z ) = ( x + y ) + z x+(y+z)=(x+y)+z x+(y+z)=(x+y)+z.
- x + 0 = 0 + x = x x+0=0+x=x x+0=0+x=x.
- 对于 x x x总有 y y y使得 x + y = y + x = 0 x+y=y+x=0 x+y=y+x=0.
- x + y = y + x x+y=y+x x+y=y+x
- x ⋅ ( y ⋅ z ) = ( x ⋅ y ) ⋅ z x \cdot(y \cdot z)=(x \cdot y) \cdot z x⋅(y⋅z)=(x⋅y)⋅z.
- x ⋅ 1 = 1 ⋅ x = x x \cdot 1=1 \cdot x=x x⋅1=1⋅x=x.
- 若 x ≠ 0 x \neq 0 x=0,总有 y y y使得 x ⋅ y = y ⋅ x = 1 x \cdot y=y \cdot x=1 x⋅y=y⋅x=1.
- x ⋅ y = y ⋅ x x \cdot y=y \cdot x x⋅y=y⋅x.
- x ⋅ ( y + z ) = ( x ⋅ y ) + ( x ⋅ z ) x \cdot(y+z)=(x \cdot y)+(x \cdot z) x⋅(y+z)=(x⋅y)+(x⋅z).