- 博客(0)
- 资源 (7)
- 收藏
- 关注
基于多模态神经网络及规则算法的智能作曲研究.pdf
GAN 和 VAE 结合深度学习网络进行基于音乐理论规则的智能音乐生成ꎬ探索智能生成音乐的算
法ꎮ 与传统的算法作曲不同ꎬ不需要手动的添加复杂的规则ꎬ而是通过训练初始音乐集、对乐曲集进行评估筛选ꎬ
最后通过 RVAE - GAN 神经网络生成音乐ꎮ 通过适应度函数计算乐曲一系列特征的加权和ꎬ如音高和节奏的分
布ꎬ也可以计算与特定乐曲集之间的距离等一系列乐理理论规则ꎮ 在此基础上ꎬ采用半监督算法形成和弦结构模
型ꎬ结合乐曲的特征提取ꎬ研究并提出基于 GAN 对抗生成网络和 VAE 网络结合音乐理论规则的智能生成音乐对于
现代流行音乐的创作和实现艺术的大众化和量产化具有重要的理论和实际意义ꎮ
2020-04-10
基于卷积神经网络的复杂网络加密流量识别.pdf
通信中的流量识别工作将直接影响网络管理整体效率. 针对复杂网络中的加密流量识别问题,结合网络流
量与文本结构相似性,提出一种基于卷积神经网络的优化识别模型. 综合考虑数据包的多样性,对原始网络数据进
行预处理,以保证算法输入数据结构的一致性. 同时,算法增加卷积操作,以提高模型特征提取效率. 仿真结果表
明,提出的卷积神经网络模型在复杂网络环境中,加密流量的服务识别与应用识别都有较高准确率.
关键词:流量识别;复杂网络;加密;卷积神经网络;预处理;特征提取
2020-04-10
基于DPI和机器学习的加密流量类型识别研究.pdf
基于DPI和机器学习的加密流量类型识别研究 ,随着互联网全站加密流量不断飙升,如何通过有效技术手段,识别互联网中各种业务流量,区分不同服务提供差异
化保障,成为了运营商面临的新挑战。针 对 D P I深层数据包检测技术能够识别出具体应用,但无法识别加密流量,提出
了一种基于D PI技术和机器学刁结合的加密流量识别方法,通 过 D P I技术识别大多数已知特征的网络流量,减少机器
学习的计算量,再通过机器学习分析未知特征加密流量,并通过实验验证该方法能够弥补DPI技术的缺陷,提高识别率
2020-04-10
协议分析系列_抓包源文件(573个) 主流协议你想要的都包括.zip
协议分析系列_抓包源文件(573个) 主流协议你想要的都包括 ARP
Auto-RP
BGP
BOOTP
CDP
CDPCP
CHAP
DEC_DNA
DNS
DTP
DVMRP
EAP
EAPoL
EIGRP
ESP
Ethernet
Frame Relay
GLBP
GRE
HDLC
HSRP
HTTP
ICMP
ICMPv6
IGMP
IP
IPCP
IPv6
IPV6CP
ISAKMP
ISIS
ISL
L2TP
LACP
LCP
LDP
LLC
LLDP
LMI
LOOP
MPLS
MSDP
NBNS
NBSS
NHRP
OCSP
OSPF
PAGP
PAP
PIM
PPP
PPPOED
PPPOES
Q933
RADIUS
RIP
SLARP
SNMP
SSH
SSL
STP
TACACS+
TCP
TDP
Telnet
UDLD
UDP
VLAN
VRRP
VTP
WCCP
2020-04-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅