GitHub 斩获 8300 星,小红书爆火开源 InstantID 要开直播了!

近年来,个性化图像生成技术发展迅速,新的趋势和成果不断涌现。这一领域已经从经典的生成对抗网络(GAN)技术,发展到当前广泛采用的扩散模型(Diffusion Model)—— 通过模拟数据的逐步扩散和逆向恢复过程,能够生成更加细腻和多样化的图像。

尽管 Textual Inversion、DreamBooth 和 LoRA 等方法在个性化图像合成方面取得了进展,但它们在实际应用中仍面临挑战,如对高存储空间的需求、耗时的微调过程,以及对多张参考图像的依赖。此外,基于 ID Embedding 的方法虽然只需一次前向推理,但仍存在大量模型参数微调耗时、与社区预训练模型不兼容以及人脸保真度较低等问题。

为解决这些限制,小红书创作发布团队于 2024 年 1 月推出开源项目 InstantID,再次吸引了行业的目光。InstantID 自 GitHub 开源以来,星标数一路飙升,位列多个榜单第一。

图片

InstantID 的独特之处在于,它能够让用户通过上传一张照片,在短短几十秒内生成多种风格强烈的写真,同时精准保留个人面貌特征。这一技术突破,不仅解决了传统个性化图像合成方法的存储和微调难题,还能与流行的预训练文本到图像扩散模型如 SD1.5 和 SDXL 无缝集成,为用户提供了便捷体验。

InstantID 在多个方面展现出其独特优势,想要与工程师面对面、更详细了解其背后的技术奥秘吗?

2 月 29 日(周四) 20:00 - 21:00,小红书技术REDtech 将携手极市平台、OpenMMLab 共同发起直播。小红书创作发布团队的算法工程师王浩帆(炎真),将在「REDtech 来了」直播间,深入剖析 InstantID 的技术精髓。他将从以下几个方面展开分享:

InstantID 为何掀起热潮:揭秘 InstantID 如何在短时间内迅速获得社区的广泛认可和支持,以及它如何激发用户和开发者的积极参与。

个性化图像合成技术回顾:回顾 Finetuning-free 和 Finetuning-based 方法的发展历程,分析 LoRA、Textual Inversion、DreamBooth、Face0 和 PhotoMaker 等技术的优缺点。

InstantID 设计思路揭秘:详细介绍如何利用强语义人脸特征替换 CLIP 的弱对齐特征,并在 Cross-Attention 中作为 Image Prompt 嵌入,以及 IdentityNet 如何实现对人脸的强语义和弱空间条件控制。

InstantID 应用案例解析:展示 InstantID 在多视角合成、ID插值、表情定制等多样化应用中的实际操作,探讨其在个性化内容创作和商业应用中的潜力。

讨论与提问:解答关于使用多个参考图像、推理速度提升、失败案例分析等普遍性问题,探讨在不同硬件配置下训练 InstantID 的可行性,以及数据集规模和质量对模型性能的影响。同时,展望未来工作的方向,包括摆脱面部关键点的依赖和 IP-Adapter 与 ControlNet 的结合。

嘉宾简介

王浩帆(炎真),InstantX 团队成员,小红书创作发布团队算法工程师,从事可控条件生成领域的创新研究。硕士毕业于卡内基梅隆大学,代表工作包括 InstantID、Score-CAM 等。

图片

直播观看方式

  • 直播时间:2024 年 2 月 29 日 20:00-21:00

  • 直播平台:微信视频号【小红书技术REDtech】,小红书、B站、抖音同名账号也将同步直播。

扫描下方二维码👇进入直播交流群,将第一时间获取直播链接及开播提醒。

图片

邀请好友预约直播好礼

图片

论文标题:InstantID: Zero-shot Identity-Preserving Generation in Seconds

GitHub:https://github.com/InstantID/InstantID  

项目主页:https://instantid.github.io/

论文地址:https://arxiv.org/abs/2401.07519

免费体验地址:https://huggingface.co/spaces/InstantX/InstantID

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小红书技术REDtech

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值