如何搞定浆料中的“麻烦精”——气泡? 文章来源:粉体圈(www.360powder.com)

很多人在生产浆料时可能都会遇到同一个问题,那就是物料中的气泡太多。这些气泡若不及时除去,往往会造成严重的后果——比如说陶瓷浆料起泡会导致成型后坯体内部气孔较多;纺织浆料起泡会影响渗透,使上浆不匀;电子浆料起泡会影响产品的容量和使用寿命;涂料起泡会使产品在应用时产生表面缺陷,既有损外观,也会影响涂度膜的防腐性和耐候性。
在这里插入图片描述 充满气泡的陶瓷浆料 因此在许多类似的生产场合,“脱泡”成为了工序中非常关键的一步。至于这些气泡是怎么来的,又是怎么去的,具体请看下文。 浆料起泡的原因 液体中气泡的产生是一个非常复杂的问题,对于液体中气泡的形成机理,较为普遍认同的观点是空化现象(cavitation),即:由于气体具有一定的溶解度,通常以气泡核的形式存在于液体中,当液体在极短的时间内流过一个绝对压强很低的区域时,气泡核会快速蒸发或游离出来。如果想让这些气泡自然消失,往往需要等待四个阶段:气泡运动到液面;在界面处形成液膜;薄膜破裂;气泡从液面分离或气泡破裂。 解决气泡的方法 目前,浆料制备过程中产生的气泡主要有三种消除方法: ①使用消泡剂:消泡剂可分两次加入,浆料制备前和浆料制备的最后; ②慢速搅拌:把浆料放在容器中,缓慢搅动; ③真空法:把浆料放在密闭容器中搅拌,同时容器保持真空状态(使用真空泵)。 其中,消泡剂之所以能消泡,主要是因为消泡剂在泡沫中扩散时,会在泡沫壁上形成双层膜,在此扩散过程中将具稳定作用的表面活性剂排开,而降低泡沫局部表面的张力,破坏泡沫的自愈效应,使泡沫破裂。
在这里插入图片描述 但由于消泡剂可能会与浆料中的化合物反应或影响浆料性能,因此一般情况下真空法更为通用,尤其是在高粘度浆料中。这是因为高粘度浆料中的气泡依靠自身浮力上升的速度极为缓慢的,因此必须依靠外力将气泡带到液面,目前比较有效的真空脱泡方式有真空搅拌脱泡法和真空薄膜脱泡法。 真空搅拌脱泡法 对于高粘度液体的搅拌,常采用慢速型搅拌器,如锚式、螺杆式、螺带式等。目前市面上一些真空搅拌机会同时利用自转和公转产生得强大的剪切力和离心力,强制性地使材料底部膨胀的气泡浮上材料表面进行脱泡,并在搅拌的同时抽真空。与真空舱方式相比,这种方法既可快速进行脱泡处理,又可有效去除材料底部的气泡。 在这里插入图片描述自转公转运行+真空脱泡的示意图(图片来源:THINKY) 真空薄膜脱泡法 真空薄膜脱泡法的分离装置会装有无级调速的公转盘和物料自转的导流头,在高真空状态下,物料在外压和真空作用下,被压至分离装置进行自转,并在公转盘的离心力下,形成薄膜均匀的旋转挤出,在强压差的情况下,气泡迅速膨胀,逸出或破裂。 在这里插入图片描述 真空脱泡机(图片来源:派勒) 解决掉气泡后,浆料的使用性能就不再受其限制。相信随着电子、医药、涂料等行业的持续火爆,业界对浆料脱泡的需求只会有增无减。如果各位看官还有什么新想法的话,也欢迎下方留言哦! 粉体圈 作者 小榆 相关内容: 气相沉积法是如何用于制造半导体薄膜的? 做电子浆料难不难? 中美合作开发出新型硫化钡锆BaZrS3薄膜半导体材料 0
文章来源:粉体圈(www.360powder.com)——粉体行业人员的生意和生活圈子!

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
数据集介绍:陆生动物多场景目标检测数据集 一、基础信息 数据集名称:陆生动物多场景目标检测数据集 数据规模: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 分类类别: - 家畜类:Cattle(牛)、Horse(马)、Sheep(羊) - 宠物类:Cat(猫)、Dog(狗) - 野生动物类:Bear(熊)、Deer(鹿)、Elephant(大象)、Monkey(猴子) - 禽类:Chicken(鸡) 标注格式: YOLO格式标注,包含目标边界框坐标和10类动物标签,支持多目标检测场景 数据特性: 涵盖俯拍视角、户外自然场景、牧场环境等多角度拍摄数据 二、适用场景 农业智能化管理: 支持开发牲畜数量统计、行为分析系统,适用于现代化牧场管理 野生动物保护监测: 可用于构建自然保护区动物识别系统,支持生物多样性研究 智能安防系统: 训练农场入侵检测模型,识别熊等危险野生动物 宠物智能硬件: 为宠物智能项等设备提供多动物识别训练数据 教育科研应用: 适用于动物行为学研究和计算机视觉教学实验 三、数据集优势 物种覆盖全面: 包含10类高价值陆生动物,覆盖畜牧、宠物、野生动物三大场景需求 标注质量优异: YOLO格式标注严格遵循标准规范,支持YOLOv5/v7/v8等主流检测框架直接训练 场景多样性突出: 包含航拍视角、近距离特写、群体活动等多种拍摄角度和场景 大规模训练保障: 超12,000张标注图片满足深度神经网络训练需求 现实应用适配性: 特别包含动物遮挡、群体聚集等现实场景样本,提升模型部署效果
参考资源链接:[锂离子电池制浆与涂布工艺解析](https://wenku.csdn.net/doc/26npszvpap?utm_source=wenku_answer2doc_content) 为了提高锂离子电池极片的质量,优化正极和负极浆料的制备工艺至关重要。首先,对于正极浆料,选择合适的活性材料如锂钴氧化物或镍锰钴三元材料,并与粘接剂PVDF、导电剂碳黑和溶剂NMP混合。重要的是要控制活性材料与粘接剂的比例,以达到最佳的电化学性能和结构稳定性。在混合过程中,应使用高剪切力分散设备,以确保所有成分得到充分分散并形成稳定的分散体系。 对于负极浆料,同样需要选择合适的人造石墨和粘接剂CMC,以及导电剂和溶剂。分散过程中要注意石墨粒子的D50值,以保证粒子大小均匀,从而获得良好的充放电性能。粘接剂的水溶性和胶体稳定性是关键,它有助于在后续干燥和热压过程中形成均一的电极结构。 在正负极浆料的分散过程中,需要确控制分散剂的种类和用量,以及分散条件,如时间和温度,避免颗粒聚集,确保浆料的微观结构均匀。分散后的浆料应进行适当剪切和消泡处理,以进一步优化性能。 涂布工艺也是关键,需要确保涂布均匀性和极片的一致性。涂布速度、间隙宽度、浆料粘度和涂布刀的角度都是需要严格控制的参数。涂布后的极片需要在恒温恒湿条件下干燥,以防止产生气孔和不均匀的干膜。 总之,优化正极和负极浆料的制备工艺,从材料选择、分散技术到涂布技术的每一个环节,都需要细致的工艺控制和参数调整,以实现极片质量的提升,进而优化整个电池的性能。关于这些方面的深入探讨和实践操作,可参考《锂离子电池制浆与涂布工艺解析》这本资料,其中包含了丰富的理论知识和实际案例,可以帮助技术人员更好地理解并应用这些优化策略。 参考资源链接:[锂离子电池制浆与涂布工艺解析](https://wenku.csdn.net/doc/26npszvpap?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值