- 博客(6)
- 收藏
- 关注
转载 argparse详解
argparse详解argparse 模块可以让人轻松编写用户友好的命令行接口。程序定义它需要的参数,然后 argparse 将弄清如何从 sys.argv 解析出那些参数。 argparse 模块还会自动生成帮助和使用手册,并在用户给程序传入无效参数时报出错误信息。代码实例它获取一个整数列表并计算总和或者最大值:import argparseparser = argparse.ArgumentParser(description='Process some integers.')parser
2021-09-16 11:06:49
246
转载 Python中super().__init__()解读
这里写自定义目录标题Python中super().__init__()解读super() 在单一继承中super()在单继承中能做什么?Python中super().init()解读本文转载至https://realpython.com/python-super/super() 在单一继承中如果您不熟悉面向对象的编程概念,那么继承可能是一个陌生的术语。继承是面向对象编程中的一个概念,其中一个类从另一个类派生(或继承)属性和行为,而无需再次实现它们。class Rectangle: def
2021-09-15 19:12:42
1108
1
原创 双向长短期记忆网络(Bi-LSTM)
在开始之前,首先区分下均命名为RNN,新手很容易混淆的两大神经网络:循环神经网络(Recurrent Neural Network,RNN)和递归神经网络(Recurssion Neural Network,RNN)。递归神经网络(RNN)是空间上的展开,处理的是树状结构的信息,模型结构如下:循环神经网络(RNN)是时间上的展开,擅长处理以时间序列数据作为输入的预测问题, 其原因在于 RNN 的网络结构可以处理时间序列数据之间的相关性。模型结构如图所示,包括输入层 x、隐藏层 h、输出层 o,在隐藏层
2021-06-08 17:36:26
48817
2
原创 卷积神经网络(CNN)
在自然语言处理任务中,卷积神经网络(CNN)无需对文本进行大量的预处理工作,有效缓解了特征工程的工作量,CNN主要由输入层、卷积层、池化层和全连接层组成。(1)输入层是对输入数据的向量表示,对于给定的长度为n的句子,输入层矩阵可表示为其中k为词向量维度。(2)卷积层使用不同的卷积核对输入矩阵进行卷积操作,提取输入的局部特征,得到卷积核特征向量图:其中,x为卷积核窗口词向量矩阵,W为权重矩阵,b为偏置,f为激活函数。(3)池化层是卷积神经网络的重要网络层,对于卷积层得到的特征向量图,可以..
2021-06-08 16:03:35
372
原创 MySQL学习记录(一)
SQL不区分大小写,当有好几条sql语句,需要用分号“;”终止每条语句USE sql_store; #使用sql_store数据库获取给定表格中所有顾客的最简单的查询方式,“*”返回所有列SELECT *FROM customers或者选择1、2列WHERE customers_id=1--WHERE customers_id=1 #注释也可以根据姓名给数据排序:ORDER BYORDER BY first_name以上子句会受顺序影响,所以SELECT、WHERE、ORDER
2021-06-08 09:18:36
198
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人