zoj 2562 More Divisors

//经典题,反素数

定义

对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数.

性质

性质一:一个反素数的质因子必然是从2开始连续的质数.
性质二:p=2^t1*3^t2*5^t3*7^t4.....必然t1>=t2>=t3>=....


搞不懂的是为什么typedef long long 会比 每个long long 快 ,之前一直超时。

  //num:当前枚举到的数,k:枚举到的第k大的质因子;sum:该数的约数个数;limit:质因子个数上限;

//l因为性质二 所以可以用limit优化


#include<cstdio>
typedef long long ll;
ll maxsum,bestnum,n;
const int prime[16]={1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47};
 void dfs(ll num,ll sum, int k, int limit)
 {
     
     int i;
     if(sum>maxsum)
     {
         bestnum=num;
         maxsum=sum;
     }
    if(maxsum==sum&&num<bestnum)
     {
         bestnum=num;
     }
     if(k>15) return;
     ll temp=num;
     for( i=1; i<=limit; i++)
     {
         if(temp*prime[k]>n) break;
          temp=temp*prime[k];
          dfs(temp,sum*(i+1),k+1,i);

     }
 }

int main()
{

    while(scanf("%lld",&n)!=EOF)
    {
        bestnum=1;
        maxsum=0;
       dfs(1,1,1,50);
       printf("%lld\n",bestnum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值