最后一个阶段——task3,本次AI夏令营终于也是要完结了,那么话不多说让我们直接进入笔记部分吧。本次的学习内容是:ComfyUI和Lora微调的讲解
Part 1:Hello ComfyUI
什么是ComfyUI呢?根据学习手册的介绍,它是主流GUI的其中一种,GUI的意思是"Graphical User Interface"(图形用户界面),也就是一种人机交互方式,可以理解为转为AI生图所设计的特种UI。那么我们使用ComfyUI的目的就很明显了——它可以辅佐我们对AI生图做出更多细节的调整,而不必面对整串整串的代码犯晕。
那么ComfyUI具体而言是如何运作的呢?我们在这里引用一下学习手册中提供的图解
可以看到它的运行流程与我们先前直接在PAI实例中尝试文生图的流程是大差不差的,不过这也正说明了它只起到便于操作的作用,毕竟只是一种UI嘛。拿编程来举例的话,你可以直接用记事本来写程序,但用vsc之类来写的更加先进便利。
好了,现在再让我们来一窥ComfyUI的真面目吧
呜哇,黑漆麻乌的,还全是英文,也不怎么很好看嘛
不管如何,这就是ComfyUI,你可以在其中进行各种操作,来生成你想要的图案
………………我是分割线…………………
收回来,ComgyUI的内核到底是什么呢?我认为b站up-Zho-说的很好
(BV1ch4y1B7vp)
ComfyUI 其实就像搭积木一样,是由最基础的部分一步一步搭建上来的,这里继续给出视频截图
通过这张图,我们可以直观地感受到ComfyUI的基础框架。其实有很多程序也以类似的框架搭建的,或许某天我们在学习编程的过程中,也会遇见类似的项目。
Part2:Lora微调
关于Lora:说实在的我现在也不是很懂Lora是怎样运转的。如果不强求理解的话,我们只需要把它当做是文生图精细化的组件就好了。
学习手册中列出了Lora微调的三点优势:
1.快速适应新任务
在特定领域有少量标注数据
的情况下,也可以有效地对模型进行个性化调整
,可以迅速适应新的领域或特定任务。
2.保持泛化能力
LoRA通过微调模型的一部分,有助于保持模型在未见过的数据上的泛化能力
,同时还能学习到特定任务的知识。
3.资源效率
LoRA旨在通过仅微调模型的部分权重,而不是整个模型,从而减少所需的计算资源和存储空间。
还介绍了一些相关参数,以及UNet、VAE和文本编码器三者间的协作关系。这些内容都挺抽象的,比较难理解,这里就不多介绍了。
在Lora的最后一小节,学习手册向我们介绍了如何获取高质量的数据集(也就是去找各种图片炼丹啦)。其中比较方便的是用爬虫去各类图站获取,不过当然的,关于图片的权益问题很难保证,这也是AI生图面临的一个难题。
结语:
到这里,本期夏令营的打卡任务就结束了,啊,感觉心情像写完暑假作业般舒畅(不对吧为什么大学前的暑假还要写暑假作业啊!)总之有关AIGC的大部分内容都挺有趣的,相信学到的这些东西必可活用于下次。那么就此打住。