chinese-bert-wwm-ext

from transformers import BertTokenizer, BertModel
import torch

tokenizer = BertTokenizer.from_pretrained("hfl/chinese-bert-wwm-ext")
model = BertModel.from_pretrained("hfl/chinese-bert-wwm-ext")

batch_sentence = [
    "这是第一句话",
    "这是第二句话",
    "第三句,有点长了"
]


token_tensor = tokenizer(batch_sentence, padding=True, truncation=True, max_length=10, return_tensors='pt')

print(token_tensor)

print(token_tensor["input_ids"].shape)

output = model(token_tensor["input_ids"])

print(output[0].shape)
print(output[1].shape)

结果:

{'input_ids': tensor([[ 101, 6821, 3221, 5018,  671, 1368, 6413,  102,    0,    0],
        [ 101, 6821, 3221, 5018,  753, 1368, 6413,  102,    0,    0],
        [ 101, 5018,  676, 1368, 8024, 3300, 4157, 7270,  749,  102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值