编程之美--重建二叉树

22 篇文章 0 订阅

给定前序遍历和中序遍历结果,比如:

前序:a b d c e f 

中序:d b a e c f

重建这颗二叉树。

思路和步骤:

1.前序遍历的第一个结点必然是要重建的这棵树的根节点。比如a就是当前序列的根节点。

2. 在中序序列中找到a结点,把中序遍历结果分为两个序列,左边的是a 的左子树d b,右边的是a的右子树 e c f。同时把前序序列也分为了左子树序列和右子树序列。

3.在分别重建a的左子树和右子树,(b d, d b)(c e f, e c f),相当于重复步骤1。可见可用递归解决之。

具体实现,直接贴代码了(参考网上):

struct NODE 
{
    NODE *pLeft;
    NODE *pRight;
    char chValue;
};

int  CharInStrFirstPos(char ch, char *str, int nLen)
{
    char *pOrgStr = str;
    while (nLen > 0 && ch != *str)
    {
        str++;
        nLen--;
    }
    
    return (nLen > 0) ? (str - pOrgStr) : -1;
}

void ReBuild_PreIn(char *pPreOrder, char *pInOrder, int nTreeLen, NODE **pRoot)
{
    if (pPreOrder == NULL || pInOrder == NULL)
    {
        return;
    }

    NODE *pTemp = new NODE;
    pTemp->chValue = *pPreOrder;
    pTemp->pLeft = NULL;
    pTemp->pRight = NULL;

    if (*pRoot == NULL)
    {
        *pRoot = pTemp;
    }

    if (nTreeLen == 1)
    {
        return;
    }

    int nLeftLen = CharInStrFirstPos(*pPreOrder, pInOrder, nTreeLen);
    assert(nLeftLen != -1);
    int nRightLen = nTreeLen - nLeftLen -1;

    if (nLeftLen > 0)
    {
        ReBuild_PreIn(pPreOrder + 1, pInOrder, nLeftLen, &((*pRoot)->pLeft));
    }

    if (nRightLen > 0)
    {
        ReBuild_PreIn(pPreOrder + nLeftLen + 1, pInOrder + nLeftLen + 1,
            nRightLen, &((*pRoot)->pRight));
    }
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值