给定前序遍历和中序遍历结果,比如:
前序:a b d c e f
中序:d b a e c f
重建这颗二叉树。
思路和步骤:
1.前序遍历的第一个结点必然是要重建的这棵树的根节点。比如a就是当前序列的根节点。
2. 在中序序列中找到a结点,把中序遍历结果分为两个序列,左边的是a 的左子树d b,右边的是a的右子树 e c f。同时把前序序列也分为了左子树序列和右子树序列。
3.在分别重建a的左子树和右子树,(b d, d b)(c e f, e c f),相当于重复步骤1。可见可用递归解决之。
具体实现,直接贴代码了(参考网上):
struct NODE
{
NODE *pLeft;
NODE *pRight;
char chValue;
};
int CharInStrFirstPos(char ch, char *str, int nLen)
{
char *pOrgStr = str;
while (nLen > 0 && ch != *str)
{
str++;
nLen--;
}
return (nLen > 0) ? (str - pOrgStr) : -1;
}
void ReBuild_PreIn(char *pPreOrder, char *pInOrder, int nTreeLen, NODE **pRoot)
{
if (pPreOrder == NULL || pInOrder == NULL)
{
return;
}
NODE *pTemp = new NODE;
pTemp->chValue = *pPreOrder;
pTemp->pLeft = NULL;
pTemp->pRight = NULL;
if (*pRoot == NULL)
{
*pRoot = pTemp;
}
if (nTreeLen == 1)
{
return;
}
int nLeftLen = CharInStrFirstPos(*pPreOrder, pInOrder, nTreeLen);
assert(nLeftLen != -1);
int nRightLen = nTreeLen - nLeftLen -1;
if (nLeftLen > 0)
{
ReBuild_PreIn(pPreOrder + 1, pInOrder, nLeftLen, &((*pRoot)->pLeft));
}
if (nRightLen > 0)
{
ReBuild_PreIn(pPreOrder + nLeftLen + 1, pInOrder + nLeftLen + 1,
nRightLen, &((*pRoot)->pRight));
}
}