买书折扣最优惠问题解法

本文探讨了书店在节假日促销活动中如何通过算法优化策略来降低读者购买特定书籍的总价格,特别是针对《哈利波特》系列的平装本,详细分析了不同数量书籍购买时的折扣策略,并提供了一个算法解决方案来实现最低价格计算。
摘要由CSDN通过智能技术生成
题目:在节假日的时候,书店一般都会做促销活动。由于《哈利波特》系列相当畅销,店长决定通过促销活动来回馈读者。在销售的《哈利波特》平装本系列中,一共有五卷,用编号0, 1, 2, 3, 4来表示。假设每一卷单独销售均需要8欧元。如果读者一次购买不同的两卷,就可以扣除5%的费用,三卷则更多。假设具体折扣的情况如下:

view sourceprint?1 本数 折扣

2 2 5%

3 3 10%

4 4 20%

5 5 25%

在一份订单中,根据购买的卷数以及本书,就会出现可以应用不同折扣规则的情况。但是,一本书只会应用一个折扣规则。比如,读者一共买了两本卷一,一本卷二。那么,可以享受到5%的折扣。另外一本卷一则不能享受折扣。如果有多种折扣,希望能够计算出的总额尽可能的低。

要求根据这样的需求,设计出算法,能够计算出读者所购买一批书的最低价格。

分析:

首先假设五册书分别为A,B,C,D,E,不失一般性可以假设Na>=Nb>=Nc>=Nd>=Ne,设所有书可以划分为k组,每组中书不重复,则在最优解中有如下性质:

所有只包含一本书的组均只包含同一本书
若有两组包含一本书的组包含的书不同,则这两组合并,能得到更优解,与最优解矛盾.

包含一本书的组只包含A
若包含书为A',若Na'==Na,则A,A'对调即可,若Na'<Na,则必存在某组包含A不包含A',则将只包含A'的组并入该组能得到更优解。

所有只包含两本书的组均包含相同两本书
组(A', B'), (A',C')折扣0.2重组为(A',B',C')与(A)折扣0.3

包含两本书的组必包含A
若存在包含一本A的组,而两本书的组不包含A,则合并能得更优解。若不存在包含一本A的组,而两本书组包含为A',A'',则包含三本书,四本组必含A而缺A'者。(A', A''), (AXY), 折扣0.4不如(A''),(AXYA')0.8。(A',A''),(AXYZ)折扣0.9不如(A''),(AXYZA')1.25。

包含两本书的组必包含B
同上证。

所有只包含三本书的组均包含相同三本书
(A,B,C),(A,B,D)折扣0.6,(A,B),(A,B,C,D)折扣0.9

所有包含三本书的组均包含A
若存在只包含A的组,合并得更优。若存在只包含A, B的组(A,B)(XYZ)折扣0.4,不如(B)(AXYZ)折扣0.8。若不存在一,二本组,假设三本书组为(X,Y,Z),则必有包含A的四本组缺X,(X,Y,Z)(A,A',A'',A''')折扣1.1,不如(Y,Z),(A,A',A'',A''',X)折扣1.35

所有包含三本的组均包含B,C
同上可证

所有包含四本书的组均包含A,B,C
设XYZW为(ABC)(BCDE)折扣1.1,不如(B,C),(A,B,C,D,E)折扣1.35。其它情况同理可证。

包含五本书与包含三本书情况不会同时出现
(A,B,C),(A,B,C,D,E)折扣1.55,不如(A,B,C,D),(A,B,C,E)折扣1.6

由以上证明可得如下结论:

每组均包含A,所有组数与A相同
所有包含两本及以上的组均包含B,组数与B同
所有包含三本及以上的组均包含C,组数与C同
三,五不并存
由此可得解法如下:

view sourceprint?01 const double BuyBook::UNIT_PRICE = 8;

02 const double BuyBook::DISCOUNTS[5] = {1, 0.95, 0.9, 0.8, 0.75};

03 static const int BOOK_KINDS = 5;

04 double BuyBook::SearchFast(int* books)

05 {

06 Sort(books);

07 int g[5];

08 g[0] = books[0] - books[1];

09 g[1] = books[1] - books[2];

10 g[2] = books[2] - books[3];

11 g[3] = books[3] - books[4];

12 g[4] = books[4];

13 int t = min(g[2], g[4]);

14 if (t > 0)

15 {

16 g[2] -= t;

17 g[4] -= t;

18 g[3] += 2 * t;

19 }

20 double sum = 0;

21 for (int i = 0; i < BOOK_KINDS; ++i)

22 {

23 sum += g[i] * (i+1) * UNIT_PRICE * DISCOUNTS[i];

24 }

25 return sum;

26 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值