学习实验
论文学习笔记
布鲁布鲁鱼
小白的小,小白的白
展开
-
学习笔记——目标检测
目标检测yolo目标检测https://blog.csdn.net/guleileo/article/details/80581858FASTER -RCNN:(1)输入测试图像;(2)将整张图片输入CNN,进行特征提取;(3)用RPN先生成一堆Anchor box,对其进行裁剪过滤后通过softmax判断anchors属于前景(foreground)或者后景(background),即是物体or不是物体,所以这是一个二分类;同时,另一分支bounding box regression修正an原创 2020-06-10 23:19:11 · 229 阅读 · 0 评论 -
学习笔记——半监督学习
SGAN介绍传统的机器学习分为监督式学习和无监督式学习。前者的数据是有标签的,后者的数据是无标签的,然而,在很多问题中,有标签的数据是非常少的,要想获得有标签的数据,需要人工标注等一些操作。而无标签的数据则比较容易获得。半监督学习就是要结合监督式和无监督式,利用少量标签数据与大量无标签数据进行训练,然后,实现对未标签数据进行分类。在生成对抗网络中,真实数据可以被看做有标签数据集,生成器随机产生的数据则可以被看做是无标签数据集。在深度卷积生成对抗网络DCGAN中,使用生成模型特征提取后的判别器已经可以实现原创 2020-06-10 11:48:04 · 418 阅读 · 0 评论 -
学习笔记——GAN
GAN概况GAN直观理解:造假酒的造假者不断从鉴定师那里得到反馈从而技术不断提升改良制造的假酒越发与真酒无异;鉴定师鉴定技术也随着不断提升。GAN 由以下两部分组成。生成器网络(generator network):它以一个随机向量(潜在空间中的一个随机点)作 为输入,并将其解码为一张合成图像。判别器网络(discriminator network)或对手(adversary):以一张图像(真实的或合成的均可)作为输入,并预测该图像是来自训练集还是由生成器网络创建。生成器将随机潜在向量转换成原创 2020-06-10 11:47:26 · 248 阅读 · 0 评论 -
神网经典实例练习
摘要:神经网络的核心组件,即层、网络、目标函数和优化器;识别手写数字电影评论划二分类问题新闻主题多分类问题预测房价(回归问题)鸢尾花数据集分类问题基于skearn的LogisticRegression...原创 2020-05-26 23:06:52 · 644 阅读 · 0 评论 -
神经网络的数学基础
初识神经网络看一个具体的神经网络示例,使用Python 的 Keras 库来学习手写数字分类将手写数字的灰度图像(28 像素×28 像素)划分到10 个类别 中(0~9)。使用 MNIST 数据集中,包括 4 个 Numpy 数组。这个数据集包含 60 000 张训练图像和 10 000 张测试图像。在机器学习中,分类问题中的某个类别叫作类(class)。数据点叫作样本(sample)。某 个样本对应的类叫作标签(label)。张量BP算法...原创 2020-05-24 23:14:15 · 1321 阅读 · 0 评论 -
DL大大的概念篇
DL入门理解“深度学习”中的“深度”指的是一系列连续的表示层。数据模型中包含多少层,这被称为模型的深度(depth)。在深度学习中,这些分层表示几乎总是通过叫作神经网络(neural network)的模型来学习 得到的。神经网络的结构是逐层堆叠。机器学习是将输入(比如图像)映射到目标(比如标签“猫”),这一过程是通过观察许多输入和目标的示例来完成的。深度神经网络通过一系列简单的数据变换(层)来实现这种输入到目标的映射,而这些数据变换都是通过观察示例学习到的。神经网络中每层对输入数据所做的具原创 2020-05-24 18:13:54 · 850 阅读 · 0 评论 -
保持DL学习
三个技巧提高你机器学习的能力· 启动一个可以在一小时内完成的小项目。· 每周完成一个项目,来建立和保持你的学习势头和建立你的项目工作区。· 在博客,Github上分享你的结果,展示兴趣,增加技能,知识并获得反馈。具体怎么做· 定义问题:研究和提炼问题的特征,来帮助我们更好的理解项目的目标。· 分析数据:通过描述性统计和可视化来分析现有的数据。· 准备数据:对数据进行格式化,以便于我们构建一个预测模型。· 评估算法:设计一部分数据,用来评估我们的模型,并选取一部分代表数据,进行分析用来改善模型原创 2020-05-22 22:35:27 · 154 阅读 · 0 评论