gcd
Rem_Inory
这个作者很懒,什么都没留下…
展开
-
【题解】洛谷P2152 [SDOI2009] SuperGCD(高精 gcd)
10^10000,这个数据范围是一定得用高精度的。。不过如果用平常递归求最大公约数的算法肯定会栈溢出,除法的高精又麻烦,所以我们可以考虑减法(虽然有人说更相减损术在这道题里其实是不成立的 但可以通过)。我们读入字符串,将对应的位存到数组里,手写高精度减法、高精度比较函数(因为gcd里我要让较大的数在前面)、输出函数,然后就要写gcd了。在没有任何优化的情况下,更相减损术的意思就是gcd(a,b...原创 2018-08-24 15:52:33 · 823 阅读 · 0 评论 -
【题解】洛谷P1029 最大公约数和最小公倍数问题(gcd 暴力)
郁闷。。这题交了三遍才过 果然我太菜了qaq就是个枚举,我说一下我的简化思路。首先循环从x0到sqrt(x0*y0),因为这后面的数都和前面相反了,所以枚举到这里就可以停下,乘二就是结果。如果枚举到一个数恰好为sqrt(x0*y0)就在乘二的基础上给结果加1.然后gcd和lcm乘积就是x0*y0,利用这个性质写一个gcd函数,然后判断一下他们的最大公约数是不是想要的那个,然后再判断一下能不能整...原创 2018-08-24 19:26:20 · 338 阅读 · 0 评论 -
【题解】洛谷P2651 添加括号III(gcd 数学)
看到是入门难度结果看了半天也不知道啥做法。。kkk大神给出了答案,a1肯定在分子上,a2肯定在分母上,如果我们想让这个式子更有可能化成整数,那么a1、a3、a4……an都应该在分子上,所以我们只需要枚举求其与a2的gcd,a2/=gcd(a2,ai),如果a2化成1了,证明可以约分成功化为整数。否则就不能#include<cstdio>#include<iostrea...原创 2018-08-24 19:44:50 · 363 阅读 · 0 评论 -
【题解】洛谷P2118 比例简化(gcd 数学)
https://www.luogu.org/blog/18993/solution-p2118暴力就行 l不大#include<cstdio>#include<iostream>#include<algorithm>#include<cmath>using namespace std;int gcd(int x,int y){...原创 2018-08-24 20:08:20 · 336 阅读 · 0 评论 -
【题解】洛谷P1027 Hankson的趣味题(gcd 枚举 数学)
纯粹的数学推理题。。。找到思路后代码实现还是不难的。注意不要开long long。。。不然会TLE一个点思路:https://zzlzk.blog.luogu.org/solution-p1072#include<cstdio>#include<iostream>#include<algorithm>#include<cstdlib&g...原创 2018-08-24 21:20:08 · 233 阅读 · 0 评论