题目描述
给你一个字符串 s
,找到 s
中最长的回文子串。
示例1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例2:
输入:s = "cbbd"
输出:"bb"
示例3:
输入:s = "a"
输出:"a"
示例4:
输入:s = "ac"
输出:"a"
提示:
1 <= s.length <= 1000
s
仅有数字和英文字母(大写或小写)组成
public class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if (len < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i..j] 是否是回文串
boolean[][] dp = new boolean[len][len];
// 初始化:所有长度为 1 的子串都是回文串
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
char[] charArray = s.toCharArray();
// 递推开始
// 先枚举子串长度
for (int L = 2; L <= len; L++) {
// 枚举左边界,左边界的上限设置可以宽松一些
for (int i = 0; i < len; i++) {
// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
int j = L + i - 1;
// 如果右边界越界,就可以退出当前循环
if (j >= len) {
break;
}
if (charArray[i] != charArray[j]) {
dp[i][j] = false;
} else {
if (j - i < 3) {
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
}
// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}
复杂度分析
- 时间复杂度:O(n²),其中 n 是字符串的长度。动态规划的状态总数为 O(n²),对于每个状态,我们需要转移的时间为 O(1)。
- 空间复杂度:O(n²),即存储动态规划状态需要的空间。