浮点数的存储
1.浮点数存储方式
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位.
例如十进制数5.5 写成二进制是101.1相当于 1.011 * 2^2
可以得出S=0,M=1.010 E=2
如果是-5.5 写成二进制是-101.1 相当于 -1.011 * 2^2
可以得出S=1,M=-1.011 E=2
** 对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M,如下图所示:
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M,如下图所示:
对于有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。
这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂,这是存入的情况
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0-255;如果E为11位,它的取值范围为0~2047。
但是,我们知道,科学计数法中的E是可以出现负数的。
所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间
数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
指数E从内存中取出还可以再分成三种情况:
1)E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
2)E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
3)E全为1
如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
下面是一道代码题:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
解析:
n=9,转化为补码:0 00000000 00000000000000000001001 拆分
s=0,E=00000000,是上述的第二种情况E全为0,E=1-127=-126
M=0.00000000000000000001001
浮点数V=(-1)^0 × 0.00000000000000000001001×2^(-126)
V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000
浮点数9.0等于二进制的1001.0,即1.001×2^3
S=0,E=3+127=130;M=1.001
写成二进制就是:0 10000010 001 0000 0000 0000 0000 0000
以%d打印,0是符号位为正,转为十进制直接算出:1091567616