40+0+30=70 rank10 这都前十……
T1,考试时就想斜率dp了,结果推出来的式子没法搞,又推了一些没用的性质,最后放弃了打了40分暴力。正解根号算法,
转移时包含的颜色最多有
n√
个,记录每个位置的上一个和下一个相同颜色的位置,转移时,pos[j]表示pos[j]+1~i中有不超过j种颜色,当i++时,要巧妙的转移(详见代码),总复杂度
O(nn√)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 40005
using namespace std;
int n,nn,m,c[N],nxt[N],pre[N],last[N],pos[N];
int cnt[N];
int f[N];
int main(){
scanf("%d%d",&n,&m);
nn=min((int)sqrt(n),m);
for(int i=1;i<=n;i++){
scanf("%d",&c[i]);
pre[i]=last[c[i]];
nxt[last[c[i]]]=i;
last[c[i]]=i;
}
for(int i=1;i<=m;i++)nxt[last[i]]=n+1;
for(int i=1;i<=n;i++){
f[i]=f[i-1]+1;
for(int j=1;j<=nn;j++){
if(pre[i]<=pos[j]){
cnt[j]++;
if(cnt[j]>j){
while(nxt[pos[j]+1]<=i)pos[j]++;
pos[j]++;cnt[j]--;
}
}
f[i]=min(f[i],f[pos[j]]+j*j);
}
}
printf("%d\n",f[n]);
return 0;
}
T2,考试时大部分时间在搞这个题,结果爆零了,蜜汁flag(打的时间和分数成反比),正解是搞一个覆盖所有的大矩形,肯定有某个小矩形是在它的某个角,暴力搜就行。。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int n, maxx,maxy,minx,miny,ANS;
struct data{
int x,y,vis;
}d[20005];
int vis[20005];
bool flag;
void dfs(int step,int l,int wh){
if(flag==1)return;
if(step==4){
for(int i=1;i<=n;i++)if(!vis[i])return;
flag=1;return ;
}
maxx=maxy=-1000000001;
minx=miny=1000000001;
for(int i=1;i<=n;i++){
if(!vis[i]||vis[i]>=step){
vis[i]=0;
maxx=max(maxx,d[i].x);maxy=max(maxy,d[i].y);
minx=min(minx,d[i].x);miny=min(miny,d[i].y);
}
}
if(wh==1){
for(int i=1;i<=n;i++)if(!vis[i])
if(d[i].x-minx<=l&&maxy-d[i].y<=l)vis[i]=step;
for(int i=1;i<=4;i++)dfs(step+1,l,i);
}
else if(wh==2){
for(int i=1;i<=n;i++)if(!vis[i])
if(maxx-d[i].x<=l&&maxy-d[i].y<=l)vis[i]=step;
for(int i=1;i<=4;i++)dfs(step+1,l,i);
}
else if(wh==3){
for(int i=1;i<=n;i++)if(!vis[i])
if(d[i].x-minx<=l&&d[i].y-miny<=l)vis[i]=step;
for(int i=1;i<=4;i++)dfs(step+1,l,i);
}
else if(wh==4){
for(int i=1;i<=n;i++)if(!vis[i])
if(maxx-d[i].x<=l&&d[i].y-miny<=l)vis[i]=step;
for(int i=1;i<=4;i++)dfs(step+1,l,i);
}
}
bool check(int x){
flag=0;
for(int i=1;i<=4;i++){
dfs(1,x,i);
if(flag)return 1;
}return 0;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld%lld",&d[i].x,&d[i].y);
maxx=max(maxx,d[i].x);maxy=max(maxy,d[i].y);
minx=min(minx,d[i].x);miny=min(miny,d[i].y);
}
int l=1,r=max(maxx-minx,maxy-miny),mid;
while(l<=r){
mid=(l+r)>>1;
if(check(mid)){ANS=mid;r=mid-1;}
else l=mid+1;
}
printf("%d\n",ANS);
return 0;
}
T3,线段树+推式子。
∑p[i]∗(i−l+1)∗(r−i+1)
=−∑i2∗p[i]+(l+r)∗∑i∗p[i]−(r+1)∗(l−1)∗∑p[i]
线段树维护 i2∗p[i],i∗p[i],p[i] 的和即可
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#define N 100005
#define LL long long
using namespace std;
LL lazy[N<<3],sum1[N<<3],sum2[N<<3],sum3[N<<3];
LL f[N],g[N];
LL n,q;
LL ans,mom,gg;
#define int long long
void pushdown(LL rt,LL l,LL r){
if(lazy[rt]){
lazy[rt<<1]+=lazy[rt];
lazy[rt<<1|1]+=lazy[rt];
LL mid=(l+r)>>1;
sum1[rt<<1]+=lazy[rt]*(mid-l+1);
sum2[rt<<1]+=lazy[rt]*(f[mid]-f[l-1]);
sum3[rt<<1]+=lazy[rt]*(g[mid]-g[l-1]);
sum1[rt<<1|1]+=lazy[rt]*(r-mid);
sum2[rt<<1|1]+=lazy[rt]*(f[r]-f[mid]);
sum3[rt<<1|1]+=lazy[rt]*(g[r]-g[mid]);
lazy[rt]=0;
}
}
void pushup(LL rt,LL l,LL r){
if(l==r)return;
sum1[rt]=sum1[rt<<1]+sum1[rt<<1|1]+lazy[rt]*(r-l+1);
sum2[rt]=sum2[rt<<1]+sum2[rt<<1|1]+lazy[rt]*(f[r]-f[l-1]);
sum3[rt]=sum3[rt<<1]+sum3[rt<<1|1]+lazy[rt]*(g[r]-g[l-1]);
}
void update(LL rt,LL l,LL r,LL x,LL y,LL z){
if(x<=l&&r<=y){
lazy[rt]+=z;
sum1[rt]+=z*(r-l+1);
sum2[rt]+=z*(f[r]-f[l-1]);
sum3[rt]+=z*(g[r]-g[l-1]);
return ;
}
pushdown(rt,l,r);
LL mid=(l+r)>>1;
if(x<=mid) update(rt<<1,l,mid,x,y,z);
if(y>mid) update(rt<<1|1,mid+1,r,x,y,z);
pushup(rt,l,r);
}
void query(LL rt,LL l,LL r,LL x,LL y){
if(x<=l&&r<=y){
ans-=sum3[rt];
ans+=(x+y)*sum2[rt];
ans-=1ll*(y+1)*(x-1)*sum1[rt];
return ;
}
pushdown(rt,l,r);
LL mid=(l+r)>>1;
if(x<=mid) query(rt<<1,l,mid,x,y);
if(y>mid) query(rt<<1|1,mid+1,r,x,y);
}
LL gcd(LL a,LL b){
return b==0?a:gcd(b,a%b);
}
signed main(){
scanf("%lld%lld",&n,&q);
for(int i=1;i<=n;i++){
f[i]=f[i-1]+i;
g[i]=g[i-1]+1ll*i*i;
}
char ch[3];
for(int i=1,l,r,d;i<=q;i++){
scanf("%s",ch);
if(ch[0]=='C'){
scanf("%lld%lld%lld",&l,&r,&d);
update(1,1,n-1,l,r-1,d);
}
else{
scanf("%lld%lld",&l,&r);
ans=0; mom=(r-l+1)*(r-l)/2;
query(1,1,n-1,l,r-1);
gg=gcd(ans,mom);
printf("%lld/%lld\n",ans/gg,mom/gg);
}
}
return 0;
}
define int long long ……233