Logistic regression

逻辑回归是一种广泛应用的机器学习方法,用于预测某个事件发生的可能性,如用户购买商品、疾病诊断等。它由回归、线性回归和Logistic方程三部分组成。线性回归是回归的一种,通过对已知公式的未知参数进行估计来找到最佳拟合。Logistic方程则用于将线性回归的结果归一化到0到1之间,以模拟概率。逻辑回归适用于线性问题,可用于概率预测和分类,但不适用于非线性问题。
摘要由CSDN通过智能技术生成

Logistic regression (逻辑回归)是常用的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。(注意这里是:“可能性”,而非数学上的“概率”,logisitc回归的结果并非数学定义中的概率值,不可以直接当做概率值来用。该结果往往用于和其他特征值加权求和,而非直接相乘)

一、定义:




二、Logistic Regression 有三个主要组成部分:回归、线性回归、Logistic方程。

  1)回归

   Logistic regression是线性回归的一种,线性回归是一种回归。

   回归其实就是对已知公式的未知参数进行估计。比如已知公式是y = a*x + b,未知参数是a和b。我们现在有很多真实的(x,y)数据(训练样本),回归就是利用这些数据对a和b的取值去自动估计。估计的方法大家可以简单的理解为,在给定训练样本点和已知的公式后,对于一个或多个未知参数,机器会自动枚举参数的所有可能取值(对于多个参数要枚举它们的不同组合),直到找到那个最符合样本点分布的参数(或参数组合)。(当然,实际运算有一些优化算法,肯定不会去枚举的)

    注意,回归的前提是公式已知,否则回归无法进行。而现实生活中哪里有已知的公式啊?因此回归中的公式基本都是数据分析人员通过看大量数据后猜测的(其实大多数是拍脑袋想出来的)。根据这些公式的不同,回归分为线性回归和非线性回归。线性回归中公式都是“一次”的(一元一次方程,二元一次方程...),而非线性则可以有各种形式(N元N次方程,log方程等等)。具体的例子在线性回归中介绍吧。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值