本篇文章为笔者的LeetCode刷题笔记。文章整体分为两部分:1.笔者自己思考的算法及代码。2.LeetCode官方给出的最优算法及代码。通过对比这两部分算法和代码的异同,笔者的算法思想和编程水平有了显著地提升。如果这篇文章能帮到你那真是再好不过了!
一、笔者思考的算法
bool containsDuplicate(int* nums, int numsSize){
int cur;
for(int i=0;i<numsSize;i++){
cur = nums[i];
for(int j=0;j<numsSize;j++){
if(cur==nums[j] && j!=i){
return true;
}
}
}
return false;
}
执行代码通过了,但超出了时间限制。
于是转换思路,算法:先对数组排序,然后再一次比较数组各项,若有重复返回true。(可采用时间复杂度为O(n^2), 空间复杂度为O(1)的冒泡排序,也可采用时间空间复杂度均为O(nlogn)的快速排序。
冒泡排序:
void bubble_sort(int* nums,int numsSize){
int m,i,j,x;
for(m=1;m<=numsSize-1;m++){
for(j=0;j<numsSize-m;j++){ //冒泡排序
if(nums[j]>nums[j+1]){
x=nums[j];
nums[j]=nums[j+1];
nums[j+1]=x;
}
}
}
}
bool containsDuplicate(int* nums, int numsSize){
bubble_sort(nums,numsSize);
for(int i=0;i<numsSize-1;i++){
if(nums[i]==nums[i+1]){
return true;
}
}
return false;
}
提示超出时间限制。
冒泡排序时间复杂度为O(n^2),空间复杂度为O(1)。那试试快速排序吧。
快速排序:
int Partition(int *nums, int low, int high){
int cur=nums[low];
int pivotkey=nums[low];
while(low<high){ //快速排序-定位函数,从该点分为左右大小子数组
while(low<high&&nums[high]>=pivotkey){
high--;
}
nums[low++]=nums[high];
while(low<high&&nums[low]<=pivotkey){
low++;
}
nums[high--]=nums[low];
}
nums[low]=cur;
return low;
}
void QSort(int *nums, int low, int high){
int pivotloc;
if(low<high){
pivotloc=Partition(nums,low,high);
}
QSort(nums,low,pivotloc-1);
QSort(nums, pivotloc+1,high);
}
//手撕快速排序
bool containsDuplicate(int* nums, int numsSize){
QSort(nums, 0,numsSize-1);
for(int i=0;i<numsSize-1;i++){
if(nums[i]==nums[i+1]){
return true;
}
}
return false;
依然显示超出时间限制,晕。。 原来c语言的<stdlib.o>头函数里有自带的qsort函数直接调用就可以了。但仍需注意一些事项,比如需要自己写一个比较函数,因为官方文档表明qsort的第四个参数需要函数名作为参数。
二、官方答案
以下代码也是官方答案中的排序方法:
int compare(const void * a, const void *b){ //比较函数 const void *指的是指向无类型的指针
int num1 = *(int*)a; //将a指针强制转换为int型,再将其所指的整数复制给num1
int num2 = *(int*)b;
return num1-num2; //若从大到小排,则为 num2-num1
}
bool containsDuplicate(int* nums, int numsSize){
qsort(nums,numsSize,sizeof(int),compare); //qsort的四个参数分别为数组始址,元素个数,元素大小,以及比较函数名
for(int i=0;i<numsSize-1;i++){
if(nums[i]==nums[i+1]){ //依次将12,23,34..元素两两比较
return true;
}
}
return false;
}
复杂度分析
时间复杂度:O(NlogN),其中 N 为数组的长度。需要对数组进行排序。
空间复杂度:O(logN),其中 N 为数组的长度。注意我们在这里应当考虑递归调用栈的深度。
三、笔者小结
可以不必手撕快速排序或冒泡排序代码,<stdlib.o>头文件有现成的轮子,但需手写比较函数作为void qsort( void *ptr, size_t count, size_t size,int (*comp)(const void *, const void *) );第四个参数。
关于qsort()函数用法:https://www.cnblogs.com/vito_wang/p/12499582.html
https://www.bilibili.com/video/BV1Nx411D7sU?from=search&seid=11982473592254318506
Keep calm and carry on!
谢谢你看到这里!