自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 DeepMove代码调试

如果需要进一步优化或调试,可以关注训练日志中的损失曲线和验证准确率,调整超参数或模型结构。测试集的预测准确率(Top-1/5/10)。中调整数据生成逻辑)或使用更小的模型(如。确认 GPU 是否启用,或尝试缩小。)获取类似数据,并转换为相同格式。目录下(或修改代码中的路径)。,包含预处理后的训练/测试数据。DeepMove 默认使用。(纽约和东京的签到数据)。Python 3 中使用。或其他公开数据集(如。

2025-04-25 14:38:38 815

原创 通过例子来展示STAN模型的推理流程

通过这个例子,可以看到STAN如何联合时空注意力做出决策。实际应用中,模型还会结合POI类别、用户画像等辅助信息进一步提升准确性。目标:预测用户下一个可能去的POI(如“餐厅”或“健身房”)。

2025-04-25 11:04:57 726

原创 STAN模型的推理流程

计算轨迹中所有POI两两之间的地理距离,形成矩阵 ( D \in \mathbb{R}^{n \times n} ),其中 ( D_{ij} ) 表示POI ( i ) 和POI ( j ) 的距离。序列示例: [(POI1, 08:00, 39.9,116.4), (POI2, 08:30, 39.91,116.41)]通过这种设计,STAN能明确建模“就近访问”行为(如“从家到咖啡厅”比“从家到公园”更可能)。权重矩阵(如08:30权重=0.7)权重: exp(-d²/2σ²)空间注意力权重(高斯核)

2025-04-23 16:33:21 877

原创 《DeepMove》和《STAN》论文中嵌入层详解

嵌入层(Embedding Layer)是深度学习模型中用于将离散型数据(如POI、时间、类别等)转换为连续向量表示的核心组件。在轨迹预测任务中,嵌入层的作用是将原始的非结构化或高维稀疏特征映射到低维稠密向量空间,从而捕捉语义、时空或序列模式。如果觉得正弦/余弦太数学,可以直接把时间戳当作一个“类别ID”,然后像POI嵌入一样,给它分配一个可学习的向量。在位置推荐中,POI(兴趣点,比如“咖啡厅”、“地铁站”)的地理位置非常重要。STAN需要让模型“知道”哪些POI离得近,哪些离得远。

2025-04-23 14:33:57 627

原创 DeepMove和STAN的核心区别、优缺点、冷启动处理能力

DeepMove → STAN的改进。

2025-04-23 10:26:04 238

原创 位置建模方法:线性插值(STAN)与网格化(DeepMove)区别详解

使用网格化,将连续空间离散为区域(如“中关村街区”),适合捕捉宏观移动模式(如工作→家庭),但无法区分同一网格内的咖啡店和书店。采用线性插值,使模型能感知“同一餐厅的两个分店距离3km”与“相邻超市距离200m”的差异,提升推荐合理性。通过线性插值,STAN实现了更细粒度的空间建模,这是其在复杂场景下性能优于DeepMove的关键之一。

2025-04-23 10:04:17 257

原创 DeepMove和STAN方法对比

使用网格化,将连续空间离散为区域(如“中关村街区”),适合捕捉宏观移动模式(如工作→家庭),但无法区分同一网格内的咖啡店和书店。采用线性插值,使模型能感知“同一餐厅的两个分店距离3km”与“相邻超市距离200m”的差异,提升推荐合理性。通过线性插值,STAN实现了更细粒度的空间建模,这是其在复杂场景下性能优于DeepMove的关键之一。DeepMove → STAN的改进。

2025-04-23 10:02:31 693

原创 论文解读:STAN: Spatio-Temporal Attention Network for Next Location Recommendation

通过自注意力层显式建模轨迹中所有签到点的相对时空信息,实现非相邻位置和非连续访问的点对点交互。地图显示了访问位置的空间分布,这些位置以 0 到 6 的数字命名。这里,我们将查询和关键字乘积的 softmax 值作为相关矩阵,并传入自注意力聚合层,用于更新签到的表征。通过掩码矩阵保留有效轨迹长度,计算查询-键-值注意力并融入时空矩阵(式6-7),更新签到点表示 ( S(u) )。将候选位置与更新后的轨迹表示匹配,计算概率分布 ( A(u) )(式8-9),保留PIF信息。

2025-04-22 17:30:54 582

原创 DeepMove-新用户(冷启动)场景分析

【代码】DeepMove-新用户(冷启动)场景分析。

2025-04-22 15:53:26 780

原创 论文解读:《DeepMove: Predicting Human Mobility with Attentional Networks》(2018)

在三个真实移动数据集上的实验表明,DeepMove比现有最优模型的预测准确率提升超过10%。此外,与现有神经网络模型相比,DeepMove能够为预测提供直观解释,增强了移动预测的可解释性。例如,政府可以通过预测未来人流优化交通规划,网约车平台(如Uber、滴滴)依赖移动预测技术调度资源。,一种基于注意力循环网络的移动预测模型,用于从长而稀疏的轨迹中预测移动行为。,通过两种机制从原理上捕捉多层次周期性,有效利用周期性特征增强循环网络的预测能力。,通过联合嵌入多个影响人类移动的因素来捕捉复杂的序列转移规律;

2025-04-22 15:35:24 946

原创 GPS轨迹数据集调研(geolife介绍)

时空轨迹算法的一些调研记录。提示:以下是本篇文章正文内容,下面案例可供参考提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

2025-04-15 10:26:59 1000

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除