文本摘要(text summarization)二: 经验模型(lead3,keyword,nous-base)

一、文本摘要(Document Summarization)

        文本摘要,一般地我们会把它分成抽取式文本摘要和生成式文本摘要。就目前的形势而言,工业界应用广泛的还是抽取式文本摘要。抽取式文本摘要的优点很多,主题不易偏离、适应性广、速度快。

        抽取式文本摘要,最最传统的方案,无疑便是Lead3算法了。

        github如下:https://github.com/yongzhuo/nlg-yongzhuo/tree/master/nlg_yongzhuo/text_summarization/extractive_sum/nous_base

二、Lead3

        Lead3,顾名思义,就是最开始的3个句子,很有意思,就这一个超级简单的算法,就能达到很好的效果,例如bertsum中的测评结果,已经接近Transformer了:

        我代码获取的是top2以及最后1句。

        代码地址: https://github.com/yongzhuo/nlg-yongzhuo/blob/master/nlg_yongzhuo/text_summarization/extractive_sum/nous_base/lead_3/lead_3.py

三、keyword

        keyword,包括word_significance,思想是抽取最有意义的词语。把关键词和句子顺序两盒起来,具体就是先遍历关键词,再顺序遍历句子,直到找到出现的第一个句子,然后删掉该句子,继续遍历。

        代码地址:https://github.com/yongzhuo/nlg-yongzhuo/blob/master/nlg_yongzhuo/text_summarization/extractive_sum/feature_base/word_significance%20.py

 

希望对你有所帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值