问题描述:
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
算法思路:
问题是要把重复的号段删除,思路就先把所有元组对按end排序,统计之前已经经历过得号段,之后遍历到的号段如果与之前有重复,那么把它删除
用sort将vector排序,设置全局end,遍历vector,如果某个ietm的start<全局end就把他删除,反之把全局end设置为item.end
代码:
class Solution {
public:
static bool cmpByEnd(Interval x, Interval y) {
return x.end < y.end;
}
int eraseOverlapIntervals(vector<Interval>& intervals) {
if(intervals.empty())
return 0;
int r = 0;
sort(intervals.begin(), intervals.end(), cmpByEnd);
int curend = intervals[0].end;
for(int i=1;i<intervals.size();i++){
if(intervals[i].start>=curend)
curend = intervals[i].end;
else
r+=1;
}
return r;
}
};