全排列

全排列

给出一个字符串或整数数组,对这个字符串或整数数组进行全排列
例如:{1, 2, 3} 数组,对这个整数数组进行全排列。

递归实现

实现

/* 
 * 递归输出序列的全排列 
 */  
void FullArray(char* array, size_t array_size, unsigned int index)  
{  
    if(index >= array_size)  
    {  
        for(unsigned int i = 0; i < array_size; ++i)  
        {  
            cout << array[i] << ' ';  
        }  

        cout << '\n';  

        return;  
    }  

    for(unsigned int i = index; i < array_size; ++i)  
    {  
        swap(array[i], array[index]);  

        FullArray(array, array_size, index + 1);  

        swap(array[i], array[index]);  
    }  
}  
// Test
int main()
{
    int array[] = { 1, 2, 3};
    fullArray(array, sizeof(array)/sizeof(array[0]), 0);
}
// 打印结果
1 2 3
1 3 2
2 1 3
2 3 1
3 2 1
3 1 2

蕴含的思想

分治法思想

  1. 问题的规模缩小到一定的程度就可以容易地解决。
  2. 问题可以分解为若干个规模较小的相同问题,即该问题有最优子结构 [2]性质。
  3. 利用该问题分解出的子问题的解可以合并为该问题的解。
  4. 该问题所分解出的各个子问题是相互独立的,即自问之间不包含公共子问题。

分治法的三个步骤:

  1. 分解(Divide):将原问题分解为若干子问题,这些子问题都是原问题规模较小的实例。
  2. 解决(Conquer):递归地求解各子问题。如果子问题规模足够小,则直接求解。
  3. 合并(Combine):将所有子问题的解合并为原问题的解。

分治在全排列中的应用

问题:

array = {1, 2, 3, … n }的全排列,心算手写非常简单,但是编写程序却无从下手。

分析过程:

  1. 如对array = {1, 2, 3, … , n} 数组进行全排列,可以先确定数组索引为 0 位置上的数字,然后再确定其他索引位置上的数字。
  2. 划分成了两个子问题:

    1. 确定array数组索引0 位置上数字全排列问题
    2. 确定array数组索引1~索引n-1位置上数字的全排列子问题
    3. 很明显,这里划分成了两个与原问题相同的子问题
    4. 注意的是,划分子问题有很强的依赖性,即必须先解决array数组索引0 位置上数字全排列问题,然后才能解决array数组索引1~索引n-1位置上数字的全排列子问题
  3. 确定array数组索引0位置上的数字是一个规模较小的子问题

    // 解决数组索引0位置上的数字
    // 注:原array索引为0位置上的数字当然可以为全排列的首数字
    for (int i = 0; i < array_size; i++) {
        swap(array[i], array[0]); 
    } 
    // 同理确定`索引index`位置上的数字,但注意,i之前位置上的数字必须已经确定
    for (int i = index; i < array_size; i++) {
        swap(array[i], array[index]);
    }
    
  4. 确定array数组索引1~索引n-1位置上数字全排列,同理可继续按照上面的方式划分子问题:即array数组索引1位置上数字的全排列问题和array数组索引2~索引n-1位置上数字的全排列问题。

  5. 每次确定array数组索引index(index:0~n-1)位置上的数字之后,array数组index+1~n-1位置上的数字也确定之后,必须恢复原数组的模样,之后给array数组索引index位置上确定新的数字时,确保原数字数组没有被打乱(因为直接使用了swap方式修改了index位置的值)。
for (int i = index; i < array_size; i++) {
    swap(array[i],array[index]);
    fullArray(array, array_size, index+1);
    swap(array[i], array[index]);
}

注:2016.11.1补充

有重复字符的全排列

去重复字符的递归算法

例如:1223的全排列
1 - 223
2 - 123
3 - 221

带重复字符的全排列就是每个字符分别与它后面非重复出现的字符交换。即:第 i 个字符(前)与第 j 个字符(后)交换时,要求[i, j)中没有与第 j 个字符相等的数。

bool isDuplicate(int* a, int lo, int hi) {
    while (lo < hi) {
        if (a[lo] == a[hi])
            return true;
        lo++;
    }
    return false;
}

void Permutation(int* a, int size, int index)
{
    if (index == size) {
        for (int i = 0; i < size; i++) 
            cout << a[i] << endl;
        return;
    }

    for (int i = index; i < size; i++) {
        if (isDuplicate(a, index, i))
            continue;
        swap(a[i], a[index]);
        Permutation(a, size, index+1);
        swap(a[i], a[index]);
    }
}

重复数字的全排列递归算法时间复杂度

Permutation函数的时间复杂度函数为f(n),n为问题规模
则 f(n) = nf(n-1) + n^2

非递归实现

参考资料

[1] Divide and Conquer - 分治法
[2] 什么是动态规划?动态规划的意义是什么?
[3] 时间复杂度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值