过拟合(over-fitting)一直都是机器学习领域出现最为频繁的字眼。对于它的定义不可谓不多:
1.
谈到过拟合,往往就涉及过拟合产生的原因,以及有哪些手段能够降低过拟合的程度。要探讨过拟合产生的缘由,以及如何降低过拟合程度,个人觉得从机器学习(称统计机器学习更合适一点)的几个基本流程展开来说比较顺畅直观。
用机器学习来解决实际问题的步骤为:数据预处理 -> 特征提取与特征选择 -> 目标函数定义 -> 模型选择 -> 模型训练 -> 模型验证 ,总体流程差不多是这样了。
过拟合(over-fitting)一直都是机器学习领域出现最为频繁的字眼。对于它的定义不可谓不多:
1.
谈到过拟合,往往就涉及过拟合产生的原因,以及有哪些手段能够降低过拟合的程度。要探讨过拟合产生的缘由,以及如何降低过拟合程度,个人觉得从机器学习(称统计机器学习更合适一点)的几个基本流程展开来说比较顺畅直观。
用机器学习来解决实际问题的步骤为:数据预处理 -> 特征提取与特征选择 -> 目标函数定义 -> 模型选择 -> 模型训练 -> 模型验证 ,总体流程差不多是这样了。