文章标题

过拟合(over-fitting)一直都是机器学习领域出现最为频繁的字眼。对于它的定义不可谓不多:

1.  

谈到过拟合,往往就涉及过拟合产生的原因,以及有哪些手段能够降低过拟合的程度。要探讨过拟合产生的缘由,以及如何降低过拟合程度,个人觉得从机器学习(称统计机器学习更合适一点)的几个基本流程展开来说比较顺畅直观。


用机器学习来解决实际问题的步骤为:数据预处理 -> 特征提取与特征选择 -> 目标函数定义 -> 模型选择 -> 模型训练 -> 模型验证 ,总体流程差不多是这样了。

>数据预处理阶段

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值