状态压缩DP(入门)

可以把一个难以描述的状态压缩为一个二进制数,即将状态用一个数字表示

例题:
  • 给定一个n*m的方格,每次可以填一个1*2或2*1的矩形,若要将其填满,共有多少种填法(1<=n<=5, 1<=m<=1000)
    这里写图片描述
分析:
  • 因为n的范围很小,所以我们可以把每一列都用一个二进制数表示,作为一个状态,则dp[i][j]表示前i列,第i列的装态为j时的最大填法数
  • 用dfs(i, j, now, next)表示深搜第i列,第j行,而第i列的状态为now,因为如果填1*2的矩形,则会对后面的状态有影响,所以用next记录对后面的影响
  • 当j==n即第i列已经讨论完时,给d[i+1][next]的值加上dp[i][now]的值

下面是代码

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 2000 + 10;
int n, m;
int dp[MAXN][MAXN];      //dp[i][j]表示讨论到了第i列,当前列的状态是j时的方式数  d[i][j] = sum(d[i-1][1~1<<n]) 

void dfs(int i, int j, int now, int next)   //第i列,当前讨论到第i列的第j个,当前列的状态为now,这一列对下一列影响后下一列的状态为next
{
    if(j == n)
    {
        dp[i+1][next] += dp[i][now];     //这一列讨论完后更新下一列的dp值 
        return ;
    }
    if( ((1<<j)&now) ) 
        dfs(i, j+1, now, next);
    if( !((1<<j)&now) ) 
        dfs(i, j+1, now, next|(1<<j));
    if( (j+1) < n && !((1<<j)&now) && !(( 1<<(j+1) )&now) ) 
        dfs(i, j+2, now, next);
    return ;
}




int main()
{
    cin >> n >> m;
    dp[1][0] = 1;
    for(int i = 1; i <= m; i++)
        for(int j = 0; j < (1<<n); j++)
            if(dp[i][j]) dfs(i, 0, j, 0); 

    cout << dp[m+1][0];

    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值