deep learning学习

阅读笔记

为什么有deep learning


手工地选取特征是一件非常费力、启发式(需要专业知识)的方法,能不能选取好很大程度上靠经验和运气,而且它的调节需要大量的时间。既然手工选取特征不太好,那么能不能自动地学习一些特征呢?答案是能!Deep Learning就是用来干这个事情的,看它的一个别名UnsupervisedFeature Learning,就可以顾名思义了,Unsupervised的意思就是不要人参与特征的选取过程。

让机器自动学习良好的特征,而免去人工选取过程。还有参考人的分层视觉处理系统。

对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。

       另外,前面是假设输出严格地等于输入,这个限制太严格,我们可以略微地放松这个限制,例如我们只要使得输入与输出的差别尽可能地小即可,这个放松会导致另外一类不同的Deep Learning方法。上述就是Deep Learning的基本思想。

 Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展。大约二三十年前,neural network曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:

1)比较容易过拟合,参数比较难tune,而且需要不少trick;

2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;

       所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deep learning框架。


浅层学习(Shallow Learning)和深度学习(Deep Learning)

浅层学习是机器学习的第一次浪潮,包括用于人工神经网络的反向传播算法(也叫Back Propagation算法或者BP算法)的发明,支撑向量机(SVM,Support Vector Machines)、 Boosting、最大熵方法(如LR,Logistic Regression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型无论是在理论分析还是应用中都获得了巨大的成功。相比之下,由于理论分析的难度大,训练方法又需要很多经验和技巧,这个时期浅层人工神经网络反而相对沉寂。
深度学习是机器学习的第二次浪潮。2006年,加拿大多伦多大学教授、机器学习领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。这篇文章有两个主要观点:1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。
当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据分布式表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。(多层的好处是可以用较少的参数表示复杂的函数)。
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

DL训练过程

为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。传统神经网络中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。而deep learning整体上是一个layer-wise的训练机制。这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。

如果对所有层同时训练,时间复杂度会太高;如果每次训练一层,偏差就会逐层传递。这会面临跟上面监督学习中相反的问题,会严重欠拟合(因为深度网络的神经元和参数太多了)。

       2006年,hinton提出了在非监督数据上建立多层神经网络的一个有效方法,简单的说,分为两步,一是每次训练一层网络,二是调优,使原始表示x向上生成的高级表示r和该高级表示r向下生成的x'尽可能一致。方法是:

1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。

2)当所有层训练完后,Hinton使用wake-sleep算法进行调优。

       将除最顶层的其它层间的权重变为双向的,这样最顶层仍然是一个单层神经网络,而其它层则变为了图模型。向上的权重用于“认知”,向下的权重用于“生成”。然后使用Wake-Sleep算法调整所有的权重。让认知和生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的结点。比如顶层的一个结点表示人脸,那么所有人脸的图像应该激活这个结点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。Wake-Sleep算法分为醒(wake)和睡(sleep)两个部分。

1)wake阶段:认知过程,通过外界的特征和向上的权重(认知权重)产生每一层的抽象表示(结点状态),并且使用梯度下降修改层间的下行权重(生成权重)。也就是“如果现实跟我想象的不一样,改变我的权重使得我想象的东西就是这样的”。

2)sleep阶段:生成过程,通过顶层表示(醒时学得的概念)和向下权重,生成底层的状态,同时修改层间向上的权重。也就是“如果梦中的景象不是我脑中的相应概念,改变我的认知权重使得这种景象在我看来就是这个概念”。

 

deep learning训练过程具体如下:

1)使用自下上升非监督学习(就是从底层开始,一层一层的往顶层训练):

       采用无标定数据(有标定数据也可)分层训练各层参数,这一步可以看作是一个无监督训练过程,是和传统神经网络区别最大的部分(这个过程可以看作是feature learning过程):

       具体的,先用无标定数据训练第一层,训练时先学习第一层的参数(这一层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层),由于模型capacity的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学习得到第n-1层后,将n-1层的输出作为第n层的输入,训练第n层,由此分别得到各层的参数;

2)自顶向下的监督学习(就是通过带标签的数据去训练,误差自顶向下传输,对网络进行微调):

       基于第一步得到的各层参数进一步fine-tune整个多层模型的参数,这一步是一个有监督训练过程;第一步类似神经网络的随机初始化初值过程,由于DL的第一步不是随机初始化,而是通过学习输入数据的结构得到的,因而这个初值更接近全局最优,从而能够取得更好的效果;所以deep learning效果好很大程度上归功于第一步的feature learning过程。



http://blog.csdn.net/zouxy09/article/details/8775488

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自动控制节水灌溉技术的高低代表着农业现代化的发展状况,灌溉系统自动化水平较低是制约我国高效农业发展的主要原因。本文就此问题研究了单片机控制的滴灌节水灌溉系统,该系统可对不同土壤的湿度进行监控,并按照作物对土壤湿度的要求进行适时、适量灌水,其核心是单片机和PC机构成的控制部分,主要对土壤湿度与灌水量之间的关系、灌溉控制技术及设备系统的硬件、软件编程各个部分进行了深入的研究。 单片机控制部分采用上下位机的形式。下位机硬件部分选用AT89C51单片机为核心,主要由土壤湿度传感器,信号处理电路,显示电路,输出控制电路,故障报警电路等组成,软件选用汇编语言编程。上位机选用586型以上PC机,通过MAX232芯片实现同下位机的电平转换功能,上下位机之间通过串行通信方式进行数据的双向传输,软件选用VB高级编程语言以建立友好的人机界面。系统主要具有以下功能:可在PC机提供的人机对话界面上设置作物要求的土壤湿度相关参数;单片机可将土壤湿度传感器检测到的土壤湿度模拟量转换成数字量,显示于LED显示器上,同时单片机可采用串行通信方式将此湿度值传输到PC机上;PC机通过其内设程序计算出所需的灌水量和灌水时间,且显示于界面上,并将有关的灌水信息反馈给单片机,若需灌水,则单片机系统启动鸣音报警,发出灌水信号,并经放大驱动设备,开启电磁阀进行倒计时定时灌水,若不需灌水,即PC机上显示的灌水量和灌水时间均为0,系统不进行灌水。
智慧农业是一种结合了现代信息技术,包括物联网、大数据、云计算等,对农业生产过程进行智能化管理和监控的新模式。它通过各种传感器和设备采集农业生产中的关键数据,如大气、土壤和水质参数,以及生物生长状态等,实现远程诊断和精准调控。智慧农业的核心价值在于提高农业生产效率,保障食品安全,实现资源的可持续利用,并为农业产业的转型升级提供支持。 智慧农业的实现依赖于多个子系统,包括但不限于设施蔬菜精细化种植管理系统、农业技术资料库、数据采集系统、防伪防串货系统、食品安全与质量追溯系统、应急追溯系统、灾情疫情防控系统、农业工作管理系统、远程诊断系统、监控中心、环境监测系统、智能环境控制系统等。这些系统共同构成了一个综合的信息管理和服务平台,使得农业生产者能够基于数据做出更加科学的决策。 数据采集是智慧农业的基础。通过手工录入、传感器自动采集、移动端录入、条码/RFID扫描录入、拍照录入以及GPS和遥感技术等多种方式,智慧农业系统能够全面收集农业生产过程中的各种数据。这些数据不仅包括环境参数,还涵盖了生长状态、加工保存、检验检疫等环节,为农业生产提供了全面的数据支持。 智慧农业的应用前景广阔,它不仅能够提升农业生产的管理水平,还能够通过各种应用系统,如库房管理、无公害监控、物资管理、成本控制等,为农业生产者提供全面的服务。此外,智慧农业还能够支持政府监管,通过发病报告、投入品报告、死亡报告等,加强农业产品的安全管理和质量控制。 面对智慧农业的建设和发展,存在一些挑战,如投资成本高、生产过程标准化难度大、数据采集和监测的技术难题等。为了克服这些挑战,需要政府、企业和相关机构的共同努力,通过政策支持、技术创新和教育培训等手段,推动智慧农业的健康发展。智慧农业的建设需要明确建设目的,选择合适的系统模块,并制定合理的设备布署方案,以实现农业生产的智能化、精准化和高效化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值