两个有序数组的中位数

两个有序数组的中位数

原文链接

题目描述

原题链接

Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively.

Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

You may assume nums1 and nums2 cannot be both empty.

Example 1:

nums1 = [1, 3]
nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]
nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5 

题目分析

从时间复杂度反推可能使用的算法

本题要求时间复杂度在 O ( l o g ( m + n ) ) O(log(m+n)) O(log(m+n))​以下,明显是二分查找的时间复杂度,所以考虑使用二分查找。

将问题抽象一下

对于两个数组AB,求其中位数,等价于将AB划分成左右两部分,这两部分满足

  • A[i - 1] <= B[j]B[j - 1] <= A[i](数组本身是升序,满足此公式表明完全左半部分全都小于右半部分)
  • i + j = m - i + n - ji + j = m - i + n - j + 1(依据m+n的奇偶,奇数情况下无法半分)

上述公式中的ij分别是A、B的划分点,如果划分点ij满足上述两种情况,则可以推出中位数是

  • m + n为奇数,则中位数是max(A[i - 1], B[j - 1])
  • m + n为偶数,则中位数是(max(A[i - 1], B[j - 1]) + min(A[i], B[j]))/2(即左半部分的最大值和右半部分的最小值的平均数)

因此,为了求出满足两件的ij,针对特定的i,可以推出j = (m + n + 1) / 2 - i(注意这里除法是向下取整,因此无论m + n是奇是偶j均可依此公式算出,但是为了防止j为负值,需要保证m <= n),因此可二分查找满足条件的i, 在二分查找过程中有以下三种情况,

  1. A[i - 1] <= B[j]B[j - 1] <= A[i],此时i即为所求
  2. A[i - 1] > B[j], 此时i取值过大,导致A的左半部大于B的右半部,应减少i
  3. B[j - 1] > A[i], 此时i取值过小,导致B的左半部大于A的右半部,应增加i

上述三种情况均未考虑边界条件,即当i = 0, j = 0, i = m, j = n这些特殊值时,对应A[i - 1], B[i - 1], A[i], B[j]并不存在,其实这种情况很简单,因为如果A[i - 1], B[i - 1], A[i], B[j]这些值存在,则需要满足上述公式,但是,若这些值并不存在,则并不需要满足上述公式。公式的表面含义是使得左半部分小于右半部分,如果没有则必然成立。所以,考虑边界情况时,

  1. A[i - 1] <= B[j] || i = 0 || j = nB[j - 1] <= A[i] || j = 0 || i = m,此时i即为所求
  2. A[i - 1] > B[j] && i > 0, 此时i取值过大,导致A的左半部大于B的右半部,应减少i
  3. B[j - 1] > A[i] && i < m, 此时i取值过小,导致B的左半部大于A的右半部,应增加i

i的增加和减少采用二分记得达到O(log(m+n))的时间复杂度。同理,若求得的i是边界情况,即i = 0或者i == m,则对中位数的计算中需要考虑对应的值是否存在(详情见源代码)

源代码

C++实现如下:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int m = nums1.size();
        int n = nums2.size();
        /* 如果 m > n, 则交换nums1和nums2, 同时交换m和n */
        if (m > n) {
            nums1.swap(nums2);
            int tl;
            int t = m;
            m = n;
            n = t;
        }
        /* 二分查找过程 */
        int mini = 0, maxi = m;
        while (mini <= maxi) {
            int i = (mini + maxi) / 2;
            int j = (n + m + 1) / 2 - i;
            if (i < m && nums2[j - 1] > nums1[i]) {
                mini = i + 1;
            } else if (i > 0 && nums1[i - 1] > nums2[j]) {
                maxi = i - 1; 
            } else {
                double maxl = 0;
                if (i == 0) {
                    maxl = nums2[j - 1];
                } else if (j == 0) {
                    maxl = nums1[i - 1];
                } else {
                    maxl = max(nums1[i - 1], nums2[j - 1]);
                }
                if ((m + n) % 2 == 1) {
                    return maxl;
                }
                double minr = 0;
                if (i == m) {
                    minr = nums2[j];
                } else if (j == n) {
                    minr = nums1[i];
                } else {
                    minr= min(nums1[i], nums2[j]);
                }
                return (maxl + minr) / 2.0;
            }
        }
        return -1;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值