这道题是二维的上楼梯。也是非常典型的dp题。
最规整的解法就是新建一个二维数组,初始化第一行第一列为1,然后任意一个空格就是他左边和上边的值的和。
有一个小点的注意,如果初始化memo数组为1.可以省去一些步骤。另外注意不要吃书画的时候神使鬼差memo[i][0]=i
int uniquePaths(int m, int n) {
vector<vector<int> > memo(n,vector<int>(m,1));
/*for(int i=0;i<n;++i)
memo[i][0]=1;
for(int i=1;i<m;++i)
memo[0][i]=1;*/
for(int i=1;i<n;++i){
for(int j=1;j<m;++j)
memo[i][j]=memo[i-1][j]+memo[i][j-1];
}
return memo[n-1][m-1];
}
既然上楼梯可以做到O(1)空间复杂度,同理这道题也可以。当我们遍历到第i行的时候,以前的值都可以舍弃掉。
int uniquePaths(int m, int n) {
vector<int> memo(n,1);
for(int i=1;i<m;++i){
for(int j=1;j<n;++j)
memo[j]+=memo[j-1];
}
return memo[n-1];
}
要搞清楚空间上到底是更新之前二维memo的行还是列,返回m还是n