二次型的定义:
一个n元二次函数,称为一个n元二次型
例如
有多少个变量,就称为多少个元,二次,是指变量的最高次有2次
二次型的矩阵表示法:
一个n元二次型,就构造一个n元方阵
咋构造嘞,例如上面这个2元二次型
a | ||
b |
即用矩阵表示
设
二次型,可表达为
二次型的标准型
定义:如果一个n元二次型,仅有平方项,而无混合项,则成为一个标准二次型,换句话说,这个矩阵,是一个对角阵
ps:为啥努力的对角化呢?因为这样的话,x1,x2就比较好求解了
二次型的规范型
定义:矩阵已经是标准型了,而且对角线上的值仅为0,1,-1
所以,我们的目标,就是将一个普通的二次型,如何转化为标准型,再进一步,如何转化为规范性
我们似乎还记得矩阵的对角化,还有实对称阵的正交相似对角化,是不是看上去,有点关系
换元法
若有一个n元二次型,,作换元
...
这样就把x换元成了y
若,B为线性变换矩阵,且可逆
这一过程,称为可逆的线性变换
若,其中Q为正交矩阵
这一过程,称为正交变换
二次型的标准化
若,可用一个可逆的线性变换
使得
其中C是对角阵,则这个二次型就是标准二次型
那么怎么求B和C呢?
方法一:配方法
把原来的式子根据 的顺序进行配方
就可以得出k的值和x与y的关系
方法二、正交变换法
因为我们主要的目的是将A矩阵给转换为一个对角矩阵,这就是我们矩阵对角化一直在干的事情。
定理:一定可以经过一个正交变换,变成一个标准二次型,
其中为A的N个特征值,Q为A的N个正交的单位化的特征向量
A的原始二次型才是起点,要搞成一个标准化的形式罢了,变量从X变到Y无所谓,变量是谁无所谓,形式得是那个形式,最后再从Y可以算出X
二次型的规范化
规划化跟标准化的差别,就是在标准化的基础上更进一步,对角线上的值需要是0,1,-1
所以可以在的基础上,再进行一次换元
...
就可以得到
将
注意:配方法和正交变换法得到的标准型的系数可能是不同的,但是系数的正负是一致的
标准型平方系数正的个数——正惯性指数
标准型平方系数负的个数——负惯性指数
所以,f不管经过怎样的可逆线性变换,所得规范型唯一
矩阵的合同
A、B都为n阶方阵,若存在n阶可逆矩阵C,使得,则称A、B合同,记作
判断A、B是否合同,可以看A、B特征值的正负个数是否相同(看这2个矩阵最后能否得到一样的规范性就可以了)
不要跟相似搞混了,相似是,记作,相似是2个横杠的