二次型和矩阵的合同

二次型的定义:

一个n元二次函数,称为一个n元二次型

例如f(x_{1},x_{2})=a(x_{1})^{2}+b(x_{2})^{2}+cx_{1}x_{2}

有多少个变量,就称为多少个元,二次,是指变量的最高次有2次

二次型的矩阵表示法:

一个n元二次型,就构造一个n元方阵

咋构造嘞,例如上面这个2元二次型

x_{1}x_{2}
x_{1}a\frac{c}{2}
x_{2}\frac{c}{2}b

 即用矩阵表示\begin{vmatrix} a &\frac{c}{2} \\ \frac{c}{2} & b \end{vmatrix}

\begin{vmatrix} x _{1}& x _{2} \end{vmatrix}\begin{vmatrix} a &\frac{c}{2} \\ \frac{c}{2} & b \end{vmatrix}\begin{vmatrix} x_{1}\\ x_{2} \end{vmatrix}=a(x_{1})^{2}+b(x_{2})^{2}+cx_{1}x_{2}

x=\begin{vmatrix} x_{1}\\ x_{2} \end{vmatrix}

二次型,可表达为f(x)=x^{T}Ax

二次型的标准型

定义:如果一个n元二次型,仅有平方项,而无混合项,则成为一个标准二次型,换句话说,这个矩阵,是一个对角阵

ps:为啥努力的对角化呢?因为这样的话,x1,x2就比较好求解了

二次型的规范型

定义:矩阵已经是标准型了,而且对角线上的值仅为0,1,-1

所以,我们的目标,就是将一个普通的二次型,如何转化为标准型,再进一步,如何转化为规范性

我们似乎还记得矩阵的对角化,还有实对称阵的正交相似对角化,是不是看上去,有点关系

P^{-1}AP=\Lambda  AA^{T}=E

换元法

​​​​​若有一个n元二次型f=x^{T}Axx=\begin{vmatrix} x_{1}\\ x_{2}\\ ...\\ x_{n} \end{vmatrix},作换元

x_{1}=b_{11}y_{1}+b_{12}y_{2}+b_{13}y_{3}...+b_{1n}y_{n}

x_{2}=b_{21}y_{1}+b_{22}y_{2}+b_{23}y_{3}...+b_{2n}y_{n}

...

x_{n}=b_{n1}y_{1}+b_{n2}y_{2}+b_{n3}y_{3}...+b_{nn}y_{n}

\begin{vmatrix} x_{1}\\ x_{2}\\ ...\\ x_{n} \end{vmatrix}=\begin{vmatrix} b_{11} & b_{12} & ...& b_{1n}\\ b_{21} & b_{22} & ... &b_{2n} \\ ... & ... &... & ...\\ b_{41} &b_{42} & ...& b_{nn} \end{vmatrix}\begin{vmatrix} y_{1}\\ y_{2}\\ ...\\ y_{n} \end{vmatrix}

这样就把x换元成了y

X=BY,B为线性变换矩阵,且可逆

这一过程,称为可逆的线性变换

X=QY,其中Q为正交矩阵

这一过程,称为正交变换

二次型的标准化

f=X^{T}AX,可用一个可逆的线性变换X=BY

使得

f=X^{T}AX\rightarrow(BY)^{T}ABY\rightarrow Y^{T}(B^{T}AB)Y\rightarrow Y^{T}CY

=k_{1}y_{1}^{2}+k_{2}y_{2}^{2}+...+k_{n}y_{n}^{2}

其中C是对角阵,则这个二次型就是标准二次型

那么怎么求B和C呢?

方法一:配方法

f=k_{1}(x_{1}+...)^{2}+k_{2}(x_{2}+...)^{2}+...+k_{n}(x_{n}+...)^{2}

=k_{1}y_{1}^{2}+k_{2}y_{2}^{2}+...+k_{n}y_{n}^{2}

把原来的式子根据x_{1},x_{2},...,x_{n} 的顺序进行配方

就可以得出k的值和x与y的关系

方法二、正交变换法

因为我们主要的目的是将A矩阵给转换为一个对角矩阵,这就是我们矩阵对角化一直在干的事情。

定理:f=X^{T}AX一定可以经过一个正交变换X=QY,变成一个标准二次型,f=\lambda _{1}y_{1}^{2}+\lambda _{2}y_{2}^{2}+...+\lambda _{n}y_{n}^{2}

其中\lambda _{1},\lambda _{2},\lambda _{3}...\lambda _{n}为A的N个特征值,Q为A的N个正交的单位化的特征向量

A的原始二次型才是起点,要搞成一个标准化的形式罢了,变量从X变到Y无所谓,变量是谁无所谓,形式得是那个形式,最后再从Y可以算出X

二次型的规范化

规划化跟标准化的差别,就是在标准化的基础上更进一步,对角线上的值需要是0,1,-1

所以可以在f=\lambda _{1}y_{1}^{2}+\lambda _{2}y_{2}^{2}+...+\lambda _{n}y_{n}^{2}的基础上,再进行一次换元

z_{1}=\sqrt{k_{1}}y_{1}

z_{1}=\sqrt{k_{2}}y_{2}

...

z_{n}=\sqrt{k_{n}}y_{n}

就可以得到f=z_{1}^{2}+z_{2}^{2}+...+z_{n}^{2}

Y^{T}CY\rightarrow Z^{T}DZ

注意:配方法和正交变换法得到的标准型的系数可能是不同的,但是系数的正负是一致的

标准型平方系数正的个数——正惯性指数

标准型平方系数负的个数——负惯性指数

所以,f不管经过怎样的可逆线性变换,所得规范型唯一

矩阵的合同

A、B都为n阶方阵,若存在n阶可逆矩阵C,使得C^{T}AC=B则称A、B合同,记作A\simeq B

判断A、B是否合同,可以看A、B特征值的正负个数是否相同(看这2个矩阵最后能否得到一样的规范性就可以了)

不要跟相似搞混了,相似是P^{-1}AP=B,记作A\cong B,相似是2个横杠的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rgbhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值