基本求导公式 与 基本积分

基本初等函数的导数与微分公式

导数公式微分公式
\huge {(x^{\mu})}'=\mu x^{\mu-1}\huge d(x^{\mu})=\mu x^{\mu -1}dx
\huge {(sin\, x)}'=cos\, x\huge d(sin\, x)=cos\, x\, dx
\huge {(cos\, x)}'=-sin\, x\huge \huge d(cos\, x)=-sin\, x\,dx
\huge {(tan\, x)}'=sec^{2}x\huge \huge d(tan\, x)=sec^{2}x\,dx
\huge {(cot\, x)}'=-csc^{2}x\huge d{(cot\, x)}=-csc^{2}x\,dx
\huge {(sec\, x)}'=sec\, x \, tan\, x\huge d{(sec\, x)}=sec\, x \, tan\, x\,dx
\huge {(csc\, x)}'=-csc\, x \, cot\, x\huge d{(csc\, x)}'=-csc\, x \, cot\, x\,dx
\huge {(a^{x})}'=a^{x}ln\, a\huge d{(a^{x})}'=a^{x}ln\, a\, dx
\huge {(e^{x})}'=e^{x}\huge d(e^{x})=e^{x}\, dx
\huge {(log_{a}\, x)}'=\frac{1}{x\, ln\, a}\huge d(log_{a}\, x)=\frac{d\, x}{x\, ln\, a}
\huge {(ln\, x)}'=\frac{1}{x}\huge d(ln\, x)=\frac{1}{x} d\, x
\huge {(arcsin\, x)}'=\frac{1}{\sqrt{1-x^{2}}}\huge d(arcsin\, x)=\frac{d\, x}{\sqrt{1-x^{2}}}
\huge {(arccos\, x)}'=-\frac{1}{\sqrt{1-x^{2}}}\huge d(arccos\, x)=-\frac{d\, x}{\sqrt{1-x^{2}}}
\huge {(arctan\, x)}'=\frac{1}{1+x^{2}}\huge d(arctan\, x)=\frac{d\, x}{1+x^{2}}
\huge {(arccot\, x)}'=-\frac{1}{1+x^{2}}\huge d(arccot\, x)=-\frac{d\, x}{1+x^{2}}

基本积分

其中k为常数,C为常数

\huge \int k\, dx=kx+C\huge \int x^{\mu }dx=\frac{1}{(\mu +1)}x^{\mu +1}
\huge \int \frac{1}{x}dx=ln\left | x \right |+C\huge \int e^{x}dx=e^{x}+C
\huge \int a^{x}dx=\frac{a^{x}}{ln\, a}+C\huge \int cos\, xdx=sin\, x+C
\huge \int sin\, xdx=-cos\, x+C\huge \int \frac{1}{cos^{2}\, x}dx=\int sec^{2}\, xdx=tan\, x+C
\huge \int \frac{1}{sin^{2}\, x}dx=\int csc^{2}xdx=-cotx+C\huge \int \frac{1}{x^{2}+1}dx=arctan\, x+C
\int \frac{1}{\sqrt{1-x^{2}}}dx=arcsin\, x+C\int sec\, x\, tan\, xdx=sec\, x+C
\int csc\, x\, cot\, xdx=-csc\, x+C\int tan\, xdx=-ln\left |cosx \right |+C
\int cot\, xdx=ln\left | sin\, x \right |+C\int sec\, xdx=ln\left | sec\, x+tan\, x \right |+C
\int csc\, xdx=ln\left | csc\, x-cot\, x \right |+C\int \frac{1}{a^{2}+x^{2}}dx=\frac{1}{a}arctan\, \frac{x}{a}+C
\int \frac{1}{x^{2}-a^{2}}dx=\frac{1}{2a}ln\left | \frac{x-a}{x+a} \right |+C\int \frac{1}{a^{2}-x^{2}}dx=arcsin\, \frac{x}{a}+C
\int \frac{1}{\sqrt{a^{2}+x^{2}}}dx=ln(x+\sqrt{a^{2}+x^{2}})+C\int \frac{1}{\sqrt{x^{2}-a^{2}}}dx=ln\left | x+ \sqrt{x^{2}-a^{2}}\right |+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rgbhi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值