旋转字符串

题目描述:给定一个字符串和一个偏移量,根据偏移量旋转字符串(从左向右旋转)

对于字符串 "abcdefg".

offset=0 => "abcdefg"
offset=1 => "gabcdef"
offset=2 => "fgabcde"
offset=3 => "efgabcd"

很简单的一道题,但是没有考虑到偏移量大于数组长度的情况。还有就是写代码是常量命名的问题,命名超级没有规则,使得代码看起来很乱。(时间  :1067 ms)

思路:创建一个新的数组,先将需要便宜的数字先放入新数组中,之后将不需要便宜的数字按顺序放入新数组中

public class Solution {
    /**
     * @param str: An array of char
     * @param offset: An integer
     * @return: nothing
     */
    public void rotateString(char[] str, int offset) {
        // write your code here
           char[] str2=new char[str.length];
	   int n = str.length-1;
	   int i=0;
	   int size = str.length;
	   if(str.length==0||str == null)  return;
	   if(offset>size) offset = offset % size;
	   if(offset >=0){  
    	   while(offset>0){
    		   str2[offset-1] = str[n];
    		   offset--;
    		   n--;
    		   i++;
    	   }
    	  if(n>=0){         //将剩余的数组按顺序放入新数组当中
    		  for(int j=0;j<=n;j++)
    		  {
    			  str2[i]=str[j];
    			  i++;
    		  }
    	  }
	   }
     for(int k=0;k<str.length;k++){
		   str[k] =str2[k];         
	   }
    }
}

看题解之后,别人的代码,简洁清晰:

例如:[a b c d e f g]  offset=3

=>[d c b a e f g]

=>[d c b a g f e]  (将整体进行替换)

=>[e f g a b c d]

public class Solution {
    /**
     * @param str: an array of char
     * @param offset: an integer
     * @return: nothing
     */
    public void rotateString(char[] str, int offset) {
        // write your code here
        if (str == null || str.length == 0)
            return;
            
        offset = offset % str.length;
        reverse(str, 0, str.length - offset - 1);
        reverse(str, str.length - offset, str.length - 1);
        reverse(str, 0, str.length - 1);
    }
    
    private void reverse(char[] str, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            char temp = str[i];
            str[i] = str[j];
            str[j] = temp;
        }
    }
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值