二叉查找树(二)之 C++的实现

 

概要

上一章介绍了"二叉查找树的相关理论知识,并通过C语言实现了二叉查找树"。这一章给出二叉查找树的C++版本。这里不再对树的相关概念进行介绍,若遇到不明白的概念,可以在上一章查找。

目录
1. 二叉树查找树
2. 二叉查找树的C++实现
3. 二叉查找树的C++实现(完整源码)
4. 二叉查找树的C++测试程序

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3576373.html


更多内容: 数据结构与算法系列 目录 

(01) 二叉查找树(一)之 图文解析 和 C语言的实现
(02) 二叉查找树(二)之 C++的实现

 

二叉查找树简介

二叉查找树(Binary Search Tree),又被称为二叉搜索树。
它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找树。如下图所示:

在二叉查找树中:
(01) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(02) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(03) 任意节点的左、右子树也分别为二叉查找树。
(04) 没有键值相等的节点(no duplicate nodes)。

 

二叉查找树的C++实现

1. 节点和二叉查找树的定义

1.1 二叉查找树节点

复制代码
template <class T>
class BSTNode{
    public:
        T key;            // 关键字(键值)
        BSTNode *left;    // 左孩子
        BSTNode *right;    // 右孩子
        BSTNode *parent;// 父结点

        BSTNode(T value, BSTNode *p, BSTNode *l, BSTNode *r):
            key(value),parent(),left(l),right(r) {}
};
复制代码

BSTNode是二叉查找树的节点,它包含二叉查找树的几个基本信息:
(01) key -- 它是关键字,是用来对二叉查找树的节点进行排序的。
(02) left -- 它指向当前节点的左孩子。
(03) right -- 它指向当前节点的右孩子。
(04) parent -- 它指向当前节点的父结点。

 

1.2 二叉树操作

复制代码
template <class T>
class BSTree {
    private:
        BSTNode<T> *mRoot;    // 根结点

    public:
        BSTree();
        ~BSTree();

        // 前序遍历"二叉树"
        void preOrder();
        // 中序遍历"二叉树"
        void inOrder();
        // 后序遍历"二叉树"
        void postOrder();

        // (递归实现)查找"二叉树"中键值为key的节点
        BSTNode<T>* search(T key);
        // (非递归实现)查找"二叉树"中键值为key的节点
        BSTNode<T>* iterativeSearch(T key);

        // 查找最小结点:返回最小结点的键值。
        T minimum();
        // 查找最大结点:返回最大结点的键值。
        T maximum();

        // 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
        BSTNode<T>* successor(BSTNode<T> *x);
        // 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
        BSTNode<T>* predecessor(BSTNode<T> *x);

        // 将结点(key为节点键值)插入到二叉树中
        void insert(T key);

        // 删除结点(key为节点键值)
        void remove(T key);

        // 销毁二叉树
        void destroy();

        // 打印二叉树
        void print();
    private:
        // 前序遍历"二叉树"
        void preOrder(BSTNode<T>* tree) const;
        // 中序遍历"二叉树"
        void inOrder(BSTNode<T>* tree) const;
        // 后序遍历"二叉树"
        void postOrder(BSTNode<T>* tree) const;

        // (递归实现)查找"二叉树x"中键值为key的节点
        BSTNode<T>* search(BSTNode<T>* x, T key) const;
        // (非递归实现)查找"二叉树x"中键值为key的节点
        BSTNode<T>* iterativeSearch(BSTNode<T>* x, T key) const;

        // 查找最小结点:返回tree为根结点的二叉树的最小结点。
        BSTNode<T>* minimum(BSTNode<T>* tree);
        // 查找最大结点:返回tree为根结点的二叉树的最大结点。
        BSTNode<T>* maximum(BSTNode<T>* tree);

        // 将结点(z)插入到二叉树(tree)中
        void insert(BSTNode<T>* &tree, BSTNode<T>* z);

        // 删除二叉树(tree)中的结点(z),并返回被删除的结点
        BSTNode<T>* remove(BSTNode<T>* &tree, BSTNode<T> *z);

        // 销毁二叉树
        void destroy(BSTNode<T>* &tree);

        // 打印二叉树
        void print(BSTNode<T>* tree, T key, int direction);
};
复制代码

BSTree是二叉树。它包含二叉查找树的根节点和二叉查找树的操作。二叉查找树的操作中有许多重载函数,例如insert()函数,其中一个是内部接口,另一个是提供给外部的接口。

 

2 遍历

这里讲解前序遍历、中序遍历、后序遍历3种方式。

2.1 前序遍历
若二叉树非空,则执行以下操作:
(01) 访问根结点;
(02) 先序遍历左子树;
(03) 先序遍历右子树。

前序遍历代码

复制代码
template <class T>
void BSTree<T>::preOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        cout<< tree->key << " " ;
        preOrder(tree->left);
        preOrder(tree->right);
    }
}

template <class T>
void BSTree<T>::preOrder() 
{
    preOrder(mRoot);
}
复制代码

 

2.2 中序遍历

若二叉树非空,则执行以下操作:
(01) 中序遍历左子树;
(02) 访问根结点;
(03) 中序遍历右子树。

中序遍历代码

复制代码
template <class T>
void BSTree<T>::inOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        inOrder(tree->left);
        cout<< tree->key << " " ;
        inOrder(tree->right);
    }
}

template <class T>
void BSTree<T>::inOrder() 
{
    inOrder(mRoot);
}
复制代码

 

2.3 后序遍历

若二叉树非空,则执行以下操作:
(01) 后序遍历左子树;
(02) 后序遍历右子树;
(03) 访问根结点。

后序遍历代码

复制代码
template <class T>
void BSTree<T>::postOrder(BSTNode<T>* tree) const
{
    if(tree != NULL)
    {
        postOrder(tree->left);
        postOrder(tree->right);
        cout<< tree->key << " " ;
    }
}

template <class T>
void BSTree<T>::postOrder() 
{
    postOrder(mRoot);
}
复制代码

 

 

看看下面这颗树的各种遍历方式:

对于上面的二叉树而言,
(01) 前序遍历结果: 3 1 2 5 4 6
(02) 中序遍历结果: 1 2 3 4 5 6 
(03) 后序遍历结果: 2 1 4 6 5 3

 

3. 查找

递归版本的代码

复制代码
template <class T>
BSTNode<T>* BSTree<T>::search(BSTNode<T>* x, T key) const
{
    if (x==NULL || x->key==key)
        return x;

    if (key < x->key)
        return search(x->left, key);
    else
        return search(x->right, key);
}

template <class T>
BSTNode<T>* BSTree<T>::search(T key) 
{
    search(mRoot, key);
}
复制代码

非递归版本的代码

复制代码
template <class T>
BSTNode<T>* BSTree<T>::iterativeSearch(BSTNode<T>* x, T key) const
{
    while ((x!=NULL) && (x->key!=key))
    {
        if (key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    return x;
}

template <class T>
BSTNode<T>* BSTree<T>::iterativeSearch(T key)
{
    iterativeSearch(mRoot, key);
}
复制代码


4. 最大值和最小值

查找最大值的代码

复制代码
template <class T>
BSTNode<T>* BSTree<T>::maximum(BSTNode<T>* tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->right != NULL)
        tree = tree->right;
    return tree;
}

template <class T>
T BSTree<T>::maximum()
{
    BSTNode<T> *p = maximum(mRoot);
    if (p != NULL)
        return p->key;

    return (T)NULL;
}
复制代码

查找最小值的代码

复制代码
template <class T>
BSTNode<T>* BSTree<T>::minimum(BSTNode<T>* tree)
{
    if (tree == NULL)
        return NULL;

    while(tree->left != NULL)
        tree = tree->left;
    return tree;
}

template <class T>
T BSTree<T>::minimum()
{
    BSTNode<T> *p = minimum(mRoot);
    if (p != NULL)
        return p->key;

    return (T)NULL;
}
复制代码

 

5. 前驱和后继

节点的前驱:是该节点的左子树中的最大节点。
节点的后继:是该节点的右子树中的最小节点。

查找前驱节点的代码

复制代码
/* 
 * 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
 */
template <class T>
BSTNode<T>* BSTree<T>::predecessor(BSTNode<T> *x)
{
    // 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
    if (x->left != NULL)
        return maximum(x->left);

    // 如果x没有左孩子。则x有以下两种可能:
    // (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
    // (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
    BSTNode<T>* y = x->parent;
    while ((y!=NULL) && (x==y->left))
    {
        x = y;
        y = y->parent;
    }

    return y;
}
复制代码

查找后继节点的代码

复制代码
/* 
 * 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
 */
template <class T>
BSTNode<T>* BSTree<T>::successor(BSTNode<T> *x)
{
    // 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
    if (x->right != NULL)
        return minimum(x->right);

    // 如果x没有右孩子。则x有以下两种可能:
    // (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
    // (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
    BSTNode<T>* y = x->parent;
    while ((y!=NULL) && (x==y->right))
    {
        x = y;
        y = y->parent;
    }

    return y;
}
复制代码


6. 插入

插入节点的代码

复制代码
/* 
 * 将结点插入到二叉树中
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 插入的结点
 */
template <class T>
void BSTree<T>::insert(BSTNode<T>* &tree, BSTNode<T>* z)
{
    BSTNode<T> *y = NULL;
    BSTNode<T> *x = tree;

    // 查找z的插入位置
    while (x != NULL)
    {
        y = x;
        if (z->key < x->key)
            x = x->left;
        else
            x = x->right;
    }

    z->parent = y;
    if (y==NULL)
        tree = z;
    else if (z->key < y->key)
        y->left = z;
    else
        y->right = z;
}

/* 
 * 将结点(key为节点键值)插入到二叉树中
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     key 插入结点的键值
 */
template <class T>
void BSTree<T>::insert(T key)
{
    BSTNode<T> *z=NULL;

    // 如果新建结点失败,则返回。
    if ((z=new BSTNode<T>(key,NULL,NULL,NULL)) == NULL)
        return ;

    insert(mRoot, z);
}
复制代码

注:本文实现的二叉查找树是允许插入相同键值的节点的。若想禁止二叉查找树中插入相同键值的节点,可以参考"二叉查找树(一)之 图文解析 和 C语言的实现"中的插入函数进行修改。

 

7. 删除

删除节点的代码

复制代码
/* 
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
template <class T>
BSTNode<T>* BSTree<T>::remove(BSTNode<T>* &tree, BSTNode<T> *z)
{
    BSTNode<T> *x=NULL;
    BSTNode<T> *y=NULL;

    if ((z->left == NULL) || (z->right == NULL) )
        y = z;
    else
        y = successor(z);

    if (y->left != NULL)
        x = y->left;
    else
        x = y->right;

    if (x != NULL)
        x->parent = y->parent;

    if (y->parent == NULL)
        tree = x;
    else if (y == y->parent->left)
        y->parent->left = x;
    else
        y->parent->right = x;

    if (y != z) 
        z->key = y->key;

    return y;
}

/* 
 * 删除结点(z),并返回被删除的结点
 *
 * 参数说明:
 *     tree 二叉树的根结点
 *     z 删除的结点
 */
template <class T>
void BSTree<T>::remove(T key)
{
    BSTNode<T> *z, *node; 

    if ((z = search(mRoot, key)) != NULL)
        if ( (node = remove(mRoot, z)) != NULL)
            delete node;
}
复制代码

 

8. 打印

打印二叉查找树的代码

复制代码
/*
 * 打印"二叉查找树"
 *
 * key        -- 节点的键值 
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
template <class T>
void BSTree<T>::print(BSTNode<T>* tree, T key, int direction)
{
    if(tree != NULL)
    {
        if(direction==0)    // tree是根节点
            cout << setw(2) << tree->key << " is root" << endl;
        else                // tree是分支节点
            cout << setw(2) << tree->key << " is " << setw(2) << key << "'s "  << setw(12) << (direction==1?"right child" : "left child") << endl;

        print(tree->left, tree->key, -1);
        print(tree->right,tree->key,  1);
    }
}

template <class T>
void BSTree<T>::print()
{
    if (mRoot != NULL)
        print(mRoot, mRoot->key, 0);
}
复制代码

 

9. 销毁

销毁二叉查找树的代码

复制代码
/*
 * 销毁二叉树
 */
template <class T>
void BSTree<T>::destroy(BSTNode<T>* &tree)
{
    if (tree==NULL)
        return ;

    if (tree->left != NULL)
        return destroy(tree->left);
    if (tree->right != NULL)
        return destroy(tree->right);

    delete tree;
    tree=NULL;
}

template <class T>
void BSTree<T>::destroy()
{
    destroy(mRoot);
}
复制代码

 

二叉查找树的C++实现(完整源码)

二叉查找树的C++实现文件(BSTree.h)

  View Code

二叉查找树的C++测试程序(BSTreeTest.cpp)

  View Code

关于二叉查找树的C++实现有两点需要补充说明的:
第1点:采用了STL模板。因此,二叉查找树支持任意数据类型。
第2点:将二叉查找树的"声明"和"实现"都位于BSTree.h中。这是因为,在二叉查找树的实现采用了模板;而C++编译器不支持对模板的分离式编译!

 

二叉查找树的C++测试程序

上面的BSTreeTest.c是二叉查找树树的测试程序,运行结果如下:

复制代码
== 依次添加: 1 5 4 3 2 6 
== 前序遍历: 1 5 4 3 2 6 
== 中序遍历: 1 2 3 4 5 6 
== 后序遍历: 2 3 4 6 5 1 
== 最小值: 1
== 最大值: 6
== 树的详细信息: 
 1 is root
 5 is  1's  right child
 4 is  5's   left child
 3 is  4's   left child
 2 is  3's   left child
 6 is  5's  right child

== 删除根节点: 3
== 中序遍历: 1 2 4 5 6 
复制代码

 

下面对测试程序的流程进行分析!

(01) 新建"二叉查找树"root。


(02) 向二叉查找树中依次插入1,5,4,3,2,6 。如下图所示:

 

(03) 遍历和查找
插入1,5,4,3,2,6之后,得到的二叉查找树如下:

前序遍历结果: 1 5 4 3 2 6 
中序遍历结果: 1 2 3 4 5 6 
后序遍历结果: 2 3 4 6 5 1 
最小值是1,而最大值是6。

 

(04) 删除节点4。如下图所示:

 

(05) 重新遍历该二叉查找树。
中序遍历结果: 1 2 4 5 6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值