K-means聚类算法:原理、实例与代码分析

在大数据时代的浪潮中,聚类分析作为一种无监督学习方法,正逐渐成为机器学习和数据挖掘领域中的热门话题。其中,K-means算法以其简单高效的特点,在各类应用场景中脱颖而出。本文将深入探讨K-means算法的原理,并通过实例和代码分析来佐证其在实际应用中的有效性。
一、K-means算法原理回顾
K-means算法的基本思想是将数据集中的n个对象划分为K个聚类,使得每个对象到其所属聚类的中心(质心)的距离之和最小。这里的距离通常采用欧氏距离来衡量。算法通过迭代的方式,不断优化聚类结果,直至满足预设的终止条件。
算法的执行过程包括以下几个关键步骤:
初始化:随机选择K个数据点作为初始聚类中心。
分配:计算每个数据点与各个聚类中心的距离,并将其分配给最近的聚类中心。
更新:重新计算每个聚类的中心,即取该聚类内所有数据点的平均值作为新的聚类中心。
迭代:重复分配和更新步骤,直至聚类中心不再发生显著变化或达到预设的迭代次数。
二、实例与代码分析
为了更直观地展示K-means算法的应用效果,我们将通过一个简单的实例和相应的Python代码进行分析。
实例:客户细分
假设