英伟达推出”生成式AI专业认证“,帮你成为大模型开发专家!

3月8日,全球AI领导者英伟达(NVIDIA)在官网推出了,生成式AI(AIGC)专业认证,通过考试可获得行业认可的权威证书。

同时英伟达也推出了相应的培训课程,包括生成式AI解释,深度学习入门/基础知识,基于Transformer 的自然语言处理,使用大语言模型进行定制应用开发,大语言模型的部署、定制、微调等,帮助学员顺利通过考试。

该认证支持远程报名和考试,适合软件工程师、数据工程师、云解决方案架构师、AI DevOps 工程师等,可增加就业竞争力成为大模型领域的专家。

认证详情地址:https://www.nvidia.com/en-us/learn/certification/generative-ai-llm-associate/

图片

本次认证将从太平洋时间3月18日,英伟达举办的“2024 GTC”人工智能大会上开始。这也是英伟达5年来首次举办的线下技术交流大会,届时将会有900多场会议,20多场与生成式AI有关。英伟达会向全球开发者展示在生成式AI领域的创新技术和最新研究成果。

图片

英伟达创始人兼首席执行官-黄仁勋表示,随着全球各行业、政务机构,正在积极寻求其变革能力,生成式AI已成为技术创新的焦点。

生成式AI认证和考试介绍

该认证由英伟达颁发,考试主题包括生成式AI和大语言模型两大块,考试时间1小时,包括50道题,考试费用135美元(约971元),在线远程考试方式。

考试详细内容包括:

机器学习和神经网络基础知识:探索机器学习的基本概念、算法以及神经网络的基础结构,包括前馈神经网络、卷积神经网络(CNN)和循环神经网络(RNN)等。

提示工程:在与大语言模型的交互中,设计和优化输入提示,以提高模型输出的相关性和准确性。

对齐:确保大模型的行为与人类的期望和道德标准一致,包括处理模型偏见和决策可解释性等问题。

图片

数据分析和可视化:通过统计方法和可视化工具来分析数据集,识别数据趋势和模式,支持数据驱动的决策过程。

实验:设计和执行实验,以验证假设、评估模型性能和探索数据的特性。

数据预处理和特征工程:通过清理、转换和选择重要的数据特征来准备数据,以提高机器学习模型的性能和准确性。

实验设计:计划和构建实验框架,以系统地测试和评估不同的算法、模型和参数配置。

大语言模型的Python库:介绍专门用于开发和训练大型语言模型的Python库,如Transformers、TensorFlow、PyTorch等。

LLM集成与部署:如何将大型语言模型集成到应用程序和服务中,包括API集成、性能优化和模型部署等。

有效期:自认证自签发之日起两年内有效。可以通过重新参加考试来获得重新认证。

考试报名地址:https://www.nvidia.com/en-us/learn/organizations/contact-us/

生成式AI课程介绍

为了帮助学员顺利通过考试,英伟达推出了系统的生成式AI课程,不过有一些是收费的,而且不便宜。当然,如果你是技术大牛,不学习课程直接参加考试也是没问题的。

主要培训课程如下:

生成式AI解释:免费、2小时;

深度学习入门:8小时、90美元;

深度学习基础知识:专业教师指导,8小时、500美元;

加速数据科学基础知识:专业教师指导,8小时、500美元;

基于 Transformer 的自然语言处理简介:6小时、30美元;

构建基于 Transformer 架构的应用程序:专业教师指导,8小时、500美元;

使用大语言模型进行应用开发:专业教师指导,8小时、500美元;

图片

使用 LLaMA-2 进行快速工程:3小时、30美元;

使用检索增强生成,来增强大语言模型:1小时、免费;

使用大语言模型开发RAG代理:6小时、30美元;

使用大语言模型开发RAG代理:专业教师指导,8小时、500美元;

课程详细地址:https://www.nvidia.com/en-us/training/online/

### NVIDIA 生成式 AI 认证详情 NVIDIA 提供了一系列针对不同技能水平和技术领域的认证项目,旨在验证个人在加速计算、深度学习以及生成式人工智能等方面的能力。对于希望获得 NVIDIA 生成式 AI 方面的专业认可而言,官方提供了专门面向开发人员和数据科学家设计的培训课程与考试。 #### 认证路径概述 为了获取 NVIDIA 的生成式 AI 认证,通常建议先完成基础级别的 GPU 加速计算或深度学习专项技能培训。这些预备课程有助于建立必要的背景知识体系,从而更好地理解更高级别的生成模型概念及其应用场景[^1]。 #### 主要内容覆盖范围 该认证计划涵盖了多个核心主题领域,包括但不限于: - **生成对抗网络(GANs)**:深入探讨 GAN 架构原理及其实现细节; - **变分自编码器(VAEs)**:讲解 VAE 工作机制并展示如何利用其特性来创建新颖的数据样本; - **Transformer 模型**:介绍基于 Transformer 结构的语言处理技术进展; - **强化学习方法论**:探索通过奖励信号指导代理行为的学习算法; 此外,在实际操作层面还将涉及 CUDA 编程接口的应用实践等内容,确保学员能够熟练运用 NVIDIA 平台资源解决复杂问题。 #### 考试形式说明 最终评估将以在线笔试的形式展开,测试考生对上述知识点的理解程度以及解决问题的实际能力。准备参加此认证的人士应充分复习相关资料,并积极参与动手实验环节以巩固所学理论知识。 ```bash # 假设这是模拟安装CUDA工具包的过程 sudo apt-get update && sudo apt-get install nvidia-cuda-toolkit ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值