幼儿园学Machine Learning
是真的一脸懵
新一代切糕传承人
这个作者很懒,什么都没留下…
展开
-
【数学建模分类预测实战】用Keras训练DNN神经网络并将模型用于回归预测
本文记录了笔者用Keras框架编写BP神经网络,训练并预测秦皇岛未来煤价数据,共分为三部分:训练、验证和预测。原创 2020-05-20 00:30:53 · 9438 阅读 · 20 评论 -
深度学习(Deep Learning)综述及其延伸,入门必看!
深度学习(Deep Learning)概述,读懂什么是深度学习,基本概念。常见的深度学习算法介绍。转载 2020-03-10 14:51:30 · 4555 阅读 · 0 评论 -
深度学习图像分类:Kaggle植物幼苗分类(Plant Seedlings Classification)完整代码
学习并参考了这个链接。提前准备:anaconda3(Jupyter);tensorflow;cv2;数据集(官网可以下,点开我给的超链接)注意:tensorflow要求python是3.5/3.6版本的,已经配置了python3.7/3.8的朋友可以重新下载一个python 3.6,具体操作网上有很多教程可以参考~基本思路:读入图片 & 数据预处理使用cv2。每个文件夹的名字就...原创 2020-03-05 00:55:04 · 3474 阅读 · 3 评论 -
机器学习入门_保持清醒必备的好文【持续更新】
1.入门读物一文带你掌握机器学习的必备基础知识菜鸟级机器学习入门2.学术文献转载 2020-02-06 01:50:30 · 198 阅读 · 0 评论 -
机器学习“HelloWorld!”——鸢尾花的分类【完整版】
From:Jason Brownlee——https://machinelearningmastery.com/machine-learning-in-python-step-by-step/另一个很好的示例——https://www.cnblogs.com/Belter/p/8831216.htmlP.S.The first machine learning project was offi...翻译 2020-02-02 20:26:02 · 6152 阅读 · 0 评论 -
机器学习一脸懵笔记【05】概率论
1.机器学习的数学符号基础1.1 希腊字母例如,在统计中,我们使用小写希腊字母mu的均值,以及标准差作为小写希腊字母sigma的情况。在线性回归中,我们将系数称为小写字母beta。了解所有大写和小写希腊字母以及如何发音非常有用。Jason:当我是研究生时,我打印了希腊字母并将其粘贴在计算机显示器上,以便我可以记住它。一个有用的把戏!1.2 序列(数组/列表)符号索引编制例如,a_i...翻译 2020-01-28 15:32:01 · 438 阅读 · 0 评论 -
机器学习一脸懵笔记【04】线性代数
参加Jason的7天免费电子邮件崩溃课程(包含示例代码)。以下为内容更新。七天mini课程规划: //教材已下载!第01天: 机器学习的线性代数第02天: 线性代数第03天: 向量第04天: 矩阵第05天: 矩阵类型和运算第06天: 矩阵分解第07天: 奇值分解Day 1: Linear Algebra for Machine Learning(2020.01.28)机器...转载 2020-01-28 01:56:06 · 252 阅读 · 1 评论 -
机器学习一脸懵笔记【03】一些常识摘录
From Baidu百科机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等。它专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。机器学习是人工智能及模式识别领域的共同研究热点!机器学习不仅在基于知识的系统中得到应用,而且在自然语言理解、非单调推理、机器视觉、模式识别...转载 2020-01-27 00:06:38 · 739 阅读 · 0 评论 -
机器学习一脸懵笔记【02】应用机器学习过程
机器学习的好处是预测和做出预测的模型。知道如何可靠地对每个问题进行高质量的预测,您需要遵循系统的流程——步骤1:定义您的问题。用一个实用的三步框架来定义问题!该框架可帮助我快速了解问题的要素和动机以及机器学习是否合适。框架如下——1:有什么问题?列出:非正式说明+形式主义+假设条件+类似问题举例说明:非正式说明口语化的描述,诸如“我需要一个程序来告诉我哪些推文将获得转发。”形式主...翻译 2020-01-25 23:45:51 · 185 阅读 · 0 评论 -
机器学习一脸懵笔记【01】我如何开始?
机器学习笔记【01】机器学习入门的最佳建议(5步)机器学习入门的最佳建议(5步)步骤1:调整心态。相信您可以练习并应用机器学习。★自上而下的学习方法(不同于常规大学学习方法)★不要从定义和理论开始。相反,首先将主题与所需的结果联系起来,然后说明如何立即获得结果。布置一个计划,该计划侧重于实践获取结果的过程,根据需要更深入地研究某些领域,但始终要在它们要求的结果范围内。如果采取这种方式,...翻译 2020-01-23 23:58:26 · 230 阅读 · 0 评论