迭代器
可迭代对象:
- list,str,tuple,etc ---->for … in … 遍历---->遍历迭代(迭代)
迭代器协议:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么引起StopIteration 异常,以终止迭代(只能往下走,不可以回退)
实现了迭代器协议的对象就是可迭代对象
如何实现?
- 通过在对象内部定义一个’_iter_'方法。
可迭代对象的测试
- 使用isinstance()来判断一个对象是否可迭代
from _collections_abc import Iterable
print(isinstance({},Iterable))
print(isinstance(str(),Iterable))
print(isinstance(set(),Iterable))
print(isinstance([],Iterable))
print(isinstance(True,Iterable))
print(isinstance(123,Iterable))
#输出
True
True
True
True
False
False
自定义一个类
from _collections_abc import Iterable
class MyClass:
def __init__(self):
self.name = []
def add(self, name):
self.name.append(name)
def __iter__(self): #'__iter__'方法可以为我们提供一个迭代器
return self.name.__iter__() #通过该迭代器,依次获取对象的每一个数据
my_class = MyClass()
my_class.add('Riku')
my_class.add('All Might')
my_class.add('Tom')
print('是否为可迭代对象:',isinstance(my_class,Iterable))
for i in my_class:
print(i)
#输出
是否为可迭代对象: True
Riku
All Might
Tom
通过迭代器:
print(my_class)
my_class_iter=iter(my_class)
print(my_class_iter)
print(next(my_class_iter))
print(next(my_class_iter))
print(next(my_class_iter))
#输出
<__main__.MyClass object at 0x02A6EFF0>
<list_iterator object at 0x04DAAF90>
Riku
All Might
Tom
for … in … 循环的本质
就是通过iter()函数获取可迭代对象的Iterable的迭代器,然后对获取到的迭代器不断调用next()
方法来获取下一个值并将其辅助,当遇到StopIteration的异常后退出。
class Test:
def __init__(self, data=1):
self.data = data
def __iter__(self):
return self
def __next__(self):
if self.data > 5:
raise StopIteration
else:
self.data+=1
return self.data-1
for i in Test(1):
print(i)
#输出
1
2
3
4
5
应用场景
迭代器的核心就是通过next()函数调用下一个数据值。如果每次返回的数据值不是在一个已有的数据集合中提取,而是通过程序按照一定规律计算生成。就意味可以不用依赖一个已有的数据集合,namely,无需将所有的迭代对象数据一次性缓存下来供后续使用。可以节约大量的存储空间
demo:
斐波那契数列
class Fib:
def __init__(self, n):
# 记录生成的斐波拉契数列的个数
self.n = n
# 记录当前记录的索引
self.current_index = 0
self.num1 = 0
self.num2 = 1
def __next__(self):
if self.current_index < self.n:
num = self.num1
self.num1, self.num2 = self.num2, self.num1 + self.num2 # 01 11 12 23 35
self.current_index += 1
return num
else:
raise StopIteration
def __iter__(self):
return self
fib = Fib(10)
for num in fib:
print(num, end=' ')
#输出
0 1 1 2 3 5 8 13 21 34
生成器
生成器,利用迭代器,我们可以在每次迭代获取数据时(通过next()方法),按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代的状态需要我们自己记录,进而才能根据当前的状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,可以采用更简便的语法,即,生成器。
生成器是一种特殊的迭代器,它比迭代器更优雅。
li = [i ** 2 for i in range(6)]
print(li)
gen = (i ** 2 for i in range(6))
for i in gen:
print(i, end=' ')
#输出
[0, 1, 4, 9, 16, 25]
0 1 4 9 16 25
生成器函数
在函数中如果出现了yield关键字,那么该函数就不再是一个普通函数而是一个生成器函数。
def foo():
yield 1
yield 2
return
yield 3
f = foo()
print(next(f)) #程序会停留在对应yield 后的语句
print(next(f))
print(next(f)) #当程序遇到return,return后的语句不会再执行,因此报错。
#输出
1
2
StopIteration
next和yield进行匹配。如果遇到return,return后的语句不会再执行,直接抛出StopIteration,终止迭代。
如果return后面有返回值,那么这个值就是异常的说明,而不是函数的返回值
def odd():
n = 1
while True:
yield n
n += 2
odd_num = odd()
for i in range(1, 6):
print(next(odd_num))
#输出
1
3
5
7
9
通过类手动编写迭代器,实现类似的效果。
class OddIter:
def __init__(self):
self.start = -1
def __iter__(self):
return self
def __next__(self):
self.start += 2
return self.start
odd = OddIter()
for i in range(6):
print(next(odd))
#输出
1
3
5
7
9
11
def odd():
n = 1
while True:
yield n
n += 2
o=odd()
print(help(o))
#输出
Help on generator object:
odd = class generator(object)
| Methods defined here:
|
| __del__(...)
|
| __getattribute__(self, name, /)
| Return getattr(self, name).
|
| __iter__(self, /)
| Implement iter(self).
|
| __next__(self, /)
| Implement next(self).
|
| __repr__(self, /)
| Return repr(self).
|
| close(...)
| close() -> raise GeneratorExit inside generator.
|
| send(...)
| send(arg) -> send 'arg' into generator,
| return next yielded value or raise StopIteration.
|
| throw(...)
| throw(typ[,val[,tb]]) -> raise exception in generator,
| return next yielded value or raise StopIteration.
|
| ----------------------------------------------------------------------
| Data descriptors defined here:
|
| gi_code
|
| gi_frame
|
| gi_running
|
| gi_yieldfrom
| object being iterated by yield from, or None
- close()
- 手动关闭生成器
def gen():
yield 1
yield 2
yield 3
yield 4
g= gen()
print(next(g))
print(next(g))
g.close()
print(next(g))
#输出
1
2
StopIteration
- send()
- 使receive赋值为其所传送的值,然后让生成器执行到下一个yield
- 如果生成器未启动,则必须在使用send()前启动生成器,而启动方法可是是gen.next(),也可以是gen.send(None)执行到第一个yield处。之后就可以使用send(para)不断的传入值。
- 如果是已启动,则sand(para)的作用就是给receive赋值为发送的值(send的参数,然后让生成器执行到下一个yield。
def Gene(): # 生成器函数
print("ok")
x = 100
print(x,0)
first = yield 50 # 这里就是send函数的关键
# send所传递的值其实就是给 =号左边的左值赋值
print(first,1)
second = yield x # 这里试第二个断点
print(second,2)
z = '123123123'
third = yield z
print(third,4)
inst = Gene()
output1 = inst.send(None)
print(output1,'a')
output2 = inst.send(30)
print(output2,'b')
output3 = inst.send(None)
print(output3)
#输出
ok
100 0
50 a
30 1
100 b
None 2
123123123
-
throw()
- 手动抛出异常
def gen():
i = 0
while i < 5:
temp = yield i
print(temp, end=' ')
i += 1
obj = gen()
print(next(obj))
print(next(obj))
print(obj.throw(Exception, '6666'))
#输出
0
None 1
Exception: 6666