软件开发中的“瑞士军刀综合征”

本文转载自 伯乐在线 - TonyRideBike 翻译自 coderoncode原文链接: coderoncode译文链接: http://blog.jobbole.com/68694/

如果大家认为这篇文章更多是在喷,我先说抱歉。“瑞士军刀综合征”的想法是起源于我和项目经理、客户、甚至其他开发者打交道的过程中产生的沮丧感,他们都以一种狭隘特殊的方式思考问题。我称之为“瑞士军刀综合征”。

瑞士军刀

“瑞士军刀”这个词通常用于描述一种可以在各种情况下使用的多种工具的集合体。

虽然这样的组合可能很有用,但同样要注意一些风险。一个有太多活动部件的工具,可能最后是完全无用的!什么都能做的工具,就是什么都做不好的工具。

就我的经验来看,同样的问题也出现在软件上。大多数时候,开发人员仅仅因为“这很酷!”就把一些功能或者一段代码放进工程里;项目经理们会认为这样或那样的特性可以增加价值,并且在项目中期修改需求;消费者因为听说或看到某个性能对他们“至关重要”而期望额外功能或特性。

这种“瑞士军刀综合征”可以有很多形式:需求范围的蔓延,过早的优化,等等。但是问题的根源在于,我们是如何理解并评判软件、工作量及其附加价值的价值:

更多功能

=

更大价值

现实中,以及绝大多数情况,事实恰恰相反。一段代码或者一个软件越复杂,它提供的价值就越少。一个个人的例子就可以简单说明这一概念,Demac Media内部使用的枢纽控制台。

本来这个应用很简单:我们需要一个(1)查看所有分配给小组的任务和(2)通过本周或两周的底线来过滤任务——简单来讲,就是一个带有过滤功能的任务整合器。

我用了一周时间,写出了基本的功能。在下周周一时,我给我们团队的项目经理展示的时候,他认为这个应用不错,很有用。

“……但是,如果……,将会更不错……”

于是瑞士军刀综合征开始了:这个工具要和另一个团队共同使用。在他们还没有开始使用之前,我们就收到了一堆需要添加的新特性。突然间,我们有了很多远超出这个应用最开始设计的需求。

 

明确目的

软件应该是简洁的,只提供它应该提供的功能。为了配合上面的军刀,一段优秀的代码,就应该像厨子的刀一样。一个厨刀很简洁,有特定的功能。一个专业大厨会在不同情况下用不同的刀。同样的思维方式也应该应用到代码中。

只做一件事,并做好它。

我们发现软件设计中也有同样的原则,通常叫做单一功能原则:

……单一功能原则规定每个类都应该有一个单一的功能,并且该功能应该由这个类完全封装起来。所有它的服务都应该严密的和该功能平行。

总结

任何一个公司、项目经理、开发人员,或者是客户都应当遵守这一逻辑。我们倾向于认为,拥有更多或者实现更多就等同于更好、更有价值。软件应该是优雅的,优雅的代码就是简洁地完成需求的代码。因此,我们开发人员有责任确保我们所写的每段代码都尽可能优雅简洁。

特别感谢:

Mark Holmes – http://markholmes.io/


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值