64、ReeF:可定制的再工程框架解析

ReeF:可定制的再工程框架解析

1. PRiM 方法基础

PRiM 方法基于先进的业务流程再工程方法,并结合了成熟的需求工程技术,如 KAOS。这些技术为该方法的各个阶段增添了优势,还推动了支持该方法应用的工具 J - PRiM 的开发。因此,PRiM 可作为制定框架的起点。

同时,在 PRiM 中使用 i 有诸多好处。一方面,i 支持该方法的所有阶段,允许通过关联进行方法组装,因为在组合不同方法块时无需建立产品模型之间的连接。而且,这也便于将各阶段应用的大多数技术替换为具有相同目标的其他 i 技术,无需大幅修改且不影响结果。另一方面,由于 i 是面向目标和面向代理的,它允许在目标和代理层面进行推理,这与再工程过程的战略性质相契合。

2. 定义 ReeF 框架

2.1 抽象过程

抽象过程是从特定的 PRiM 方法中提取常见的再工程特征。使用方法再工程方法,以实现四个主要意图:定义一个部分、定义一个指南、识别一个方法块和定义一个方法块。
- 确定方法部分 :PRiM 方法有明确的过程模型,通过功能策略从其阶段建立方法映射部分。各阶段的意图(或目标)被识别并记录,如使用人类活动建模分析当前过程、将当前过程概念化为 i 模型、为新过程引出需求并探索不同的过程替代方案、使用评估技术评估生成的过程替代方案以及创建新信息系统的规范。
-
细化部分 :在审查与这些意图相关的指南时,发现“为新过程引出需求并基于这些需求探索不同的过程替代方案”部分包含两个可独立处理的不同产品。因此,应用进展发现策略,将该部分分

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值