hdu2159“FATE”完全背包
一、什么是完全背包
有这样一个问题:
在你面前放着n种宝石,每种宝石重量为wi,价值为vi,数量无限;你有一个最多可以放m重量的背包。现在你想在不超重的情况下,是你带走的宝石价值最大,问最大价值是多少?
在这里,“完全”是指每一种宝石都有无数个,不是指背包能装多少物品(不是背包的属性)。
dp用于保存背包的状态S(有某些必要的维度,如容量等)
注意:在某一背包容量下的最大价值不一定是完全利用背包容量的!!!
二、代码
写了两个代码,注意区别:dp表示状态的方式不同。初始化的不同。
代码一:复杂度O(k*m)
这里只用一个维度维护背包的容量,而每一个状态dp(S)总内含对应背包状态的装载个数。
#include<iostream>
using namespace std;
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
const int maxn = 1e2;
struct S//状态:
{
int v; //最大经验
int cot;//杀死怪物数
};
S dp[maxn];//dp[c]:忍耐值为c时,获得的最大经验为dp[c].v,此时杀怪数为dp[c].cot;
struct Node//怪
{
int w;//减少的忍耐度
int v;//经验
};
Node node[maxn]; //保存输入的怪
//hdu2159
int n, m, k, s;//需要经验,忍耐度, 怪物种类, 最大杀怪数
void scaner()
{
for(int i = 0; i < k; i++){//输入怪的类型
scanf("%d %d", &node[i].v, &node[i].w);
//cout << "node[i].v:" << node[i].v << " node[i].w:" << node[i].w << endl;
}
}
void solve()
{
//初始化:杀了0只怪 且 背包容量为0时,杀怪数和获得经验都为0.
for(int i = 0; i <= m; i++){//背包容量
dp[i].v = dp[i].cot = 0;
}
//递推
for(int i = 0; i < k; i++){//每一种怪物
for(int c = node[i].w; c <= m; c++){//背包维度
if(dp[c-node[i].w].cot < s && dp[c].v < node[i].v + dp[c-node[i].w].v){//目前状态可以杀怪且杀了更多经验
dp[c].v = dp[c-node[i].w].v + node[i].v ;
dp[c].cot = 1 + dp[c-node[i].w].cot;
}
}
}
// for(int i = 0; i <= m; i++)
// cout << dp[i].v << " " << dp[i].cot << endl;
// cout << endl;
}
int ans()
{
for(int i = 0; i <= m; i++){
if(dp[i].v >= n){
return m - i;
}
}
return -1;
}
int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d %d %d %d", &n, &m, &k, &s)){
scaner();
solve();
printf("%d\n", ans());
}
return 0;
}
代码二:复杂度O(ksm)
这里dp有两个维度,容量和装载数。这样就导致了某些状态因为可装载数不可能实现而导致dp表中的状态不可能存在。根据题意,不可能存在的状态可用-1表示。(注意初始化)
在代码一种,dp种所有状态都存在。
#include<iostream>
using namespace std;
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
const int maxn = 1e2;
int dp[maxn][maxn]; //dp[i][c]杀怪数为i,忍耐度为c,最大获得经验
struct Node//怪
{
int w;//忍耐度
int v;//经验
};
Node node[maxn]; //保存输入的怪
//hdu2159
int n, m, k, s;//需要经验,忍耐度, 怪物种类, 最大杀怪数
void scaner()
{
for(int i = 0; i < k; i++){//输入怪的类型
scanf("%d %d", &node[i].v, &node[i].w);
//cout << "node[i].v:" << node[i].v << " node[i].w:" << node[i].w << endl;
}
}
void solve()
{
//初始化
for(int i = 0; i <= s; i++){//怪的数量
for(int j = 0; j <= m; j++){//背包容量
dp[i][j] = -1; //-1表示该状态不存在
}
}
//杀了0只怪时
for(int i = 0; i <= m; i++){
dp[0][i] = 0;
}
//递推
for(int i = 0; i < k; i++){//怪的维度
for(int j = 1; j <= s; j++){
for(int c = node[i].w; c <= m; c++){//背包容量
if(dp[j-1][c-node[i].w] != -1){//当有前一个状态时才能择其大的方案
dp[j][c] = max(dp[j][c], dp[j-1][c-node[i].w] + node[i].v);
}
//若没有前一个状态则保持原状
}
}
}
// cout << "s = " << s << " m = " << m << endl;
// for(int i = 0; i <= s; i++){
// for(int j = 0; j <= m; j++){
// cout << dp[i][j] << "\t";
// }
// cout << endl;
// }
}
int ans()
{
int ret = dp[0][0];
for(int c = 0; c <= m; c++){
for(int i = 0; i <= s; i++){
if(dp[i][c] >= n){
return m - c;
}
}
}
return -1;
}
int main()
{
//freopen("in.txt", "r", stdin);
while(~scanf("%d %d %d %d", &n, &m, &k, &s)){
scaner();
solve();
printf("%d\n", ans());
}
return 0;
}