CV方向杂记
机器学习个人笔记
JintuZheng
胡言乱语综合征患者,私人用博客
展开
-
图像油画滤镜艺术效果 python实现(超像素方法)
效果今天在写超像素代码模块的时候偶然发现利用超像素竟然可以实现类似的油画效果,后来看了一下油画效果opencv的实现发现原理有类似之处。先来利用超像素实现的油画效果:原图:(来自davis2017数据集的图片,将就一下)处理效果:实现步骤很简单两步就行了:第一步:超像素分割区域第二步:分割区域材质取样替代原像素下面是原创代码:from skimage.segmentati...原创 2020-02-15 13:34:01 · 2975 阅读 · 0 评论 -
根据模型泛化能力调节神经网络结构的简单方法(训练优化)
泛化(1)泛化能力就是模型的拟合程度,一般来说对于泛化能力,我们采取三种级别进行衡量,“欠拟合”,“正常拟合”,“果拟合”。(2)泛化差错泛化差错分为三类:“偏差差错”(bias),“方差差错”(variance),“噪声”(noise)。Bias属于由于网络结构缺陷而产生的,网络越复杂,Bias越小,如果Bias过大,证明出现欠拟合。Variance是由于训练数据和测试数据的差异而产生...原创 2020-02-11 20:44:25 · 1526 阅读 · 0 评论 -
简单的线性分类器训练MNIST(Pytorch基础练习)
完整文件:https://github.com/JintuZheng/Blog-/blob/master/Demo_LogicRegression_MNIST.py包导入准备import torchvision.datasetsimport torchvision.transformsimport torch.utils.dataimport matplotlib.pyplot as p...原创 2020-02-10 10:43:32 · 2821 阅读 · 0 评论 -
股票成交量预测(Pytorch基础练习)
题目现有一个csv关于2012-2018的股票交易数据文件,有五列数据:开盘价,最高价,最低价,收盘价,成交量,现在训练一个逻辑回归,预测判断次日的股市升还是降。示例 csv文件下载:https://github.com/JintuZheng/Blog-/blob/master/FB.csv数据示例:导入准备import pandas as pdimport torchimpor...原创 2020-02-10 10:29:49 · 3524 阅读 · 0 评论 -
RoboMaster 目标检测训练(官方数据集)附完整Demo代码
下载数据集预处理数据集训练示例测试Python下的端口编程原创 2020-02-06 18:30:57 · 13976 阅读 · 58 评论 -
Pytorch 疑案之:优化器和损失函数是如何关联起来的?
疑问:fc=torch.nn.Linear(n_features,1)criterion=torch.nn.BCEWithLogitsLoss() # Loss optimizer=torch.optim.Adam(fc.parameters()) # optimizer for step in range(n_steps): if step: optimizer...原创 2020-02-05 21:01:21 · 4572 阅读 · 6 评论 -
Pytorch 线性回归(下)【Pytorch 基础第四话】
数据归一化假如我们不对数据进行归一化,数据会在损失曲线下降到一般的时候就不再快速下降了。因为再快速下降的时候,是因为某个特征带来的红利,但一旦红利耗尽之后,再次迭代就不再那么明显了,会十分缓慢。如图:对数据进行归一化之后再进行线性回归:归一化手段,示例使用均值归一化,公式如下:X:=X−avg(X)rangeX:=\frac{X-avg(X)}{range}X:=rangeX−avg(...原创 2020-02-04 22:06:50 · 492 阅读 · 0 评论 -
Pytorch 线性回归(上)【Pytorch 基础第三话】
最小二乘法求解什么是最小二乘法?如何理解最小二乘法?我们假设对如下线性关系进行求解:Y=WXY=WXY=WX例如:已知X和Y矩阵:X4∗2=[x00x01x10x11x20x21x30x31]X^{4*2}=\begin{bmatrix}x_{00}&x_{01}\\x_{10}&x_{11}\\x_{20}&x_{21}\\x_{30}&x_{31}...原创 2020-02-04 20:05:48 · 903 阅读 · 0 评论 -
Pytorch 梯度优化问题【Pytorch 基础第二话】
Debug准备:3D绘图为了方便研究二元图像,我们需要更直观的看到整个图像全貌。我们编写draw3D_func函数。import numpy as npfrom mpl_toolkits.mplot3d import Axes3Dimport matplotlib.pyplot as pltfrom matplotlib import cmfrom matplotlib.colors ...原创 2020-02-04 10:18:21 · 626 阅读 · 1 评论 -
Pytorch 张量操作(创建,变形,元素选取,拼接)【Pytorch 基础第一话】
本文集成代码文件下载地址:Debug 预备工作为了方便我们查看张量数据,我们先编写一个用于输出张量数据的函数ptf_tensorimport torchimport randomimport stringdef ptf_tensor(t,tag='tensor_'): salt = ''.join(random.sample(string.ascii_letters ...原创 2020-02-03 18:11:42 · 9174 阅读 · 0 评论 -
机器学习从零开始系列【第五话】过拟合与正则化
什么是过拟合 (Overfitting)来看三张图:分别是 【Underfit (High bias)】 【Pretty well】【Overfitting】如果有太多特征features会导致它想法设法去适应我们的训练集,甚至会出现cost=0或者很接近0的情况。如果我们想摆脱这种overfitting的状况,就必须简化Hypothesis的模型,对后面无关的x3,x4进行一定的惩罚。...原创 2020-02-02 22:03:29 · 245 阅读 · 0 评论 -
机器学习从零开始系列【第四话】分类问题
二分类问题我们所说的逻辑回归问题实际上是分类问题的一种,并不是回归问题,这是历史遗留原因y∈y\iny∈ {0,1}Negative class 和Positive class为什么线性分类器在分类问题表现不好?引入逻辑回归模型我们需要满足:0≤h(θ)≤10 \leq h(\theta)\leq10≤h(θ)≤1而我们之前设置的回归假设函数:Z=θXZ=\theta XZ=θX...原创 2020-02-02 18:03:39 · 262 阅读 · 0 评论 -
机器学习从零开始系列【第三话】多项式回归问题
特征缩放 (Features scaling)为什么需要特征缩放?目的让所有的变量处在一个数量级上,如果某一个变量的数量级和其他的相差太严重会导致收敛太慢,因为我们对每个变量使用的学习率都是一致的。假如有某个变量的数量级太大,会导致损失函数的梯度图呈现这样扁竖的样子:【解决方法:均值归一化】(Mean normalization)X:=X−avg(X)rangeX:=\frac{X-a...原创 2020-02-02 10:27:24 · 289 阅读 · 0 评论 -
机器学习从零开始系列【第二话】矩阵与向量基础
矩阵 (Matrix)R2∗3=[000000]R^{2*3}=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}R2∗3=[000000](Rows,Cols)来对应(Y,X)[简记:rc-yx]Aij=ithRows,jthColsA_{ij}=i^{th}Rows,j^{th}ColsAij...原创 2020-02-01 21:34:01 · 255 阅读 · 0 评论 -
机器学习从零开始系列【第一话】线性回归与基础概念
有监督学习 (Supervised Learning)Regression problem(回归问题)Classicfication problem(分类问题)Regression problem predict real-value output and Classicification predict discrete value ouput.分类问题输出已知的离散预测值回归...原创 2020-02-01 19:53:53 · 336 阅读 · 0 评论 -
Yolov3 训练自己的数据集 Pytorch 最简单 最少代码 最易调参
目前烦恼你是不是已经被网上繁琐的 Yolov3 训练自己数据集的教程搞晕了?你是不是还在纠结 xxx.cfg 文件到底怎样改又或者网上参差不齐的训练代码难以调参?如果你仅仅是为了追求工程上的快速搭建开发,这里使用基于Pytorch的第三方库 “芷山” (英文:zisan)来实现最快速的Yolov3训练自己数据集。这里提供下地址:zisan官网zisan Yolov3训练自己数据集 实现...原创 2020-01-26 16:32:28 · 4760 阅读 · 62 评论 -
机器学习经典算法【第一话】:KNN,K-means
CV和机器学习第一弹(1):KNN,K-meansKNN算法——机器学习的门口:首先,我们要区分KNN和K-means算法,KNN全称:K-NearestNeighbor,KNN是分类算法,而K-means是聚类算法。什么为之分类,什么为之聚类?分类好比我们已经知道一堆豆子里面有黄豆,红豆,绿豆三种,但我们有新的豆子,需要知道新的豆子属于哪一种,现在我们把豆子和已知的这堆豆子比对,这颗新...原创 2019-09-04 01:19:10 · 1014 阅读 · 0 评论