核心思想
快速幂本质上就是快速计算n的多次幂,如果我们用暴力去算,那样就需要花费很多时间,这时候就要用到倍增算法了。假设说我们要计算2的100次方,我们就可以看成是2的50次方乘2的50次方,所以我们只需要求出来2的50次方就可以了。2的50次方又可以看成是2的25次方乘2的25次方,求出2的25次方就可以了。2的25次方又可以看成2的12次方乘2的12次方再乘2.这样我们就可以一直往下分一只分到2的1次方就可以了。这样的话,计算的效率就会非常之快。
例题——幂取模
题目描述
输入正整数a、n和m,输出a^n mod m的值。a,n,m<=10^9
输入描述
输入正整数a、n和m
输出描述
输出a^n mod m
样例
输入
1 2 3
输出
1
分析
这道题就是经典的快速幂问题,首先定义一个变量ans(后面的变量尽量都使用long long类型的,int类型的可能内存不够)等于1。然后while循环直至n小于等于0,如果n不是2的倍数,就将ans赋值为ansa mod m,之后将a赋值为aa mod m,再将n/2。最后返回ans就可以了。
快速幂代码:
typedef long long ll;
ll qpow(ll a, ll n, ll m) {
ll ans = 1;
while (n) {
if (n % 2 == 1)
ans = (ans * a) % m;
a = (a * a) % m;
n >>= 1;
}
return ans;
}
源代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
ll a, n, m;
ll qpow(ll a, ll n, ll m) {
ll ans = 1;
while (n) {
if (n % 2 == 1)
ans = (ans * a) % m;
a = (a * a) % m;
n >>= 1;
}
return ans;
}
int main() {
scanf("%lld%lld%lld", &a, &n, &m);
ll ans = qpow(a, n, m);
printf("%lld", ans);
return 0;
}