快速幂运算

核心思想

快速幂本质上就是快速计算n的多次幂,如果我们用暴力去算,那样就需要花费很多时间,这时候就要用到倍增算法了。假设说我们要计算2的100次方,我们就可以看成是2的50次方乘2的50次方,所以我们只需要求出来2的50次方就可以了。2的50次方又可以看成是2的25次方乘2的25次方,求出2的25次方就可以了。2的25次方又可以看成2的12次方乘2的12次方再乘2.这样我们就可以一直往下分一只分到2的1次方就可以了。这样的话,计算的效率就会非常之快。

例题——幂取模

题目描述

输入正整数a、n和m,输出a^n mod m的值。a,n,m<=10^9

输入描述

输入正整数a、n和m

输出描述

输出a^n mod m

样例

输入

1 2 3

输出

1

分析

这道题就是经典的快速幂问题,首先定义一个变量ans(后面的变量尽量都使用long long类型的,int类型的可能内存不够)等于1。然后while循环直至n小于等于0,如果n不是2的倍数,就将ans赋值为ansa mod m,之后将a赋值为aa mod m,再将n/2。最后返回ans就可以了。

快速幂代码:

typedef long long ll;
ll qpow(ll a, ll n, ll m) {
	ll ans = 1;
	while (n) {
		if (n % 2 == 1)
			ans = (ans * a) % m;
		a = (a * a) % m;
		n >>= 1;
	}
	return ans;
}

源代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
ll a, n, m;
ll qpow(ll a, ll n, ll m) {
	ll ans = 1;
	while (n) {
		if (n % 2 == 1)
			ans = (ans * a) % m;
		a = (a * a) % m;
		n >>= 1;
	}
	return ans;
}
int main() {
	scanf("%lld%lld%lld", &a, &n, &m);
	ll ans = qpow(a, n, m);
	printf("%lld", ans);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值