分布式航天器编队控制与水下机械臂遥操作控制方案解析
分布式航天器编队控制
在航天器编队飞行中,实现集成的姿态 - 轨道跟踪控制是一个关键问题,尤其是在考虑外部干扰且要避免航天器之间持续通信的情况下。
控制目标
目标是实现分布式航天器编队的集成姿态 - 轨道跟踪控制,在有限时间内收敛,并避免各航天器之间的持续通信。为此,提出了带有事件触发控制(ETC)的非奇异快速终端滑模控制(NFTSMC)律$f_{ui}(t)$,以确保误差状态变量在有限时间内满足$\hat{\eta} {ei}(t) = \pm\hat{1}$,$\hat{\xi} {ei}(t) = \hat{0}$和$\hat{\omega}_{ei}(t) = \hat{0}$。
控制律设计
- 滑模面设计 :对于第$i$个航天器,提出了如下的非奇异快速终端滑模(NFTSM)面来设计集成姿态 - 轨道跟踪控制律:
$\hat{s} {i}(t) = s {i}(t) + \epsilon s_{i}’(t) = \hat{\Phi} {i} \odot sig^{\alpha_1}(\hat{\omega} {ei}(t)) + \hat{\Psi} {i} \odot sig^{\alpha_2}(\hat{\xi} {ei}(t)) + \hat{\xi} {ei}(t)$
其中,对于任意对偶向量$\hat{v} = v + \epsilon v’$,$sig^{\alpha}(\hat{v})$定义为$s