重要|Spark driver端得到executor返回值的方法

640?wx_fmt=png

有人说spark的代码不优雅,这个浪尖就忍不了了。实际上,说spark代码不优雅的主要是对scala不熟悉,spark代码我觉得还是很赞的,最值得阅读的大数据框架之一。

今天这篇文章不是为了争辩Spark 代码优雅与否,主要是讲一下理解了spark源码之后我们能使用的一些小技巧吧。

spark 使用的时候,总有些需求比较另类吧,比如有球友问过这样一个需求:

浪尖,我想要在driver端获取executor执行task返回的结果,比如task是个规则引擎,我想知道每条规则命中了几条数据,请问这个怎么做呢?

这个是不是很骚气,也很常见,按理说你输出之后,在mysql里跑条sql就行了,但是这个往往显的比较麻烦。而且有时候,在 driver可能还要用到这些数据呢?具体该怎么做呢?


大部分的想法估计是collect方法,那么用collect如何实现呢?大家自己可以考虑一下,我只能告诉你不简单,不如输出到数据库里,然后driver端写sql分析一下。


还有一种考虑就是使用自定义累加器。这样就可以在executor端将结果累加然后在driver端使用,不过具体实现也是很麻烦。大家也可以自己琢磨一下下~


那么,浪尖就给大家介绍一个比较常用也比较骚的操作吧。


其实,这种操作我们最先想到的应该是count函数,因为他就是将task的返回值返回到driver端,然后进行聚合的。我们可以从idea count函数点击进去,可以看到

  def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

也即是sparkcontext的runJob方法。

Utils.getIteratorSize _这个方法主要是计算每个iterator的元素个数,也即是每个分区的元素个数,返回值就是元素个数:

/**	
   * Counts the number of elements of an iterator using a while loop rather than calling	
   * [[scala.collection.Iterator#size]] because it uses a for loop, which is slightly slower	
   * in the current version of Scala.	
   */	
  def getIteratorSize[T](iterator: Iterator[T]): Long = {	
    var count = 0L	
    while (iterator.hasNext) {	
      count += 1L	
      iterator.next()	
    }	
    count	
  }

然后就是runJob返回的是一个数组,每个数组的元素就是我们task执行函数的返回值,然后调用sum就得到我们的统计值了。


那么我们完全可以借助这个思路实现我们开头的目标。浪尖在这里直接上案例了:

import org.apache.spark.{SparkConf, SparkContext, TaskContext}	
import org.elasticsearch.hadoop.cfg.ConfigurationOptions	
	
object es2sparkRunJob {	
	
  def main(args: Array[String]): Unit = {	
    val conf = new SparkConf().setMaster("local[*]").setAppName(this.getClass.getCanonicalName)	
	
    conf.set(ConfigurationOptions.ES_NODES, "127.0.0.1")	
    conf.set(ConfigurationOptions.ES_PORT, "9200")	
    conf.set(ConfigurationOptions.ES_NODES_WAN_ONLY, "true")	
    conf.set(ConfigurationOptions.ES_INDEX_AUTO_CREATE, "true")	
    conf.set(ConfigurationOptions.ES_NODES_DISCOVERY, "false")	
    conf.set("es.write.rest.error.handlers", "ignoreConflict")	
    conf.set("es.write.rest.error.handler.ignoreConflict", "com.jointsky.bigdata.handler.IgnoreConflictsHandler")	
	
    val sc = new SparkContext(conf)	
    import org.elasticsearch.spark._	
	
    val rdd = sc.esJsonRDD("posts").repartition(10)	
	
    rdd.count()	
    val func = (itr : Iterator[(String,String)]) => {	
      var count = 0	
      itr.foreach(each=>{	
        count += 1	
      })	
      (TaskContext.getPartitionId(),count)	
    }	
	
    val res = sc.runJob(rdd,func)	
	
    res.foreach(println)	
	
    sc.stop()	
  }	
}	

例子中driver端获取的就是每个task处理的数据量。

效率高,而且操作灵活高效~

是不是很骚气~~


更多spark源码知识,flink知识,欢迎加入浪尖知识星球,一起学习~

640?wx_fmt=png

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值