数据挖掘十大经典算法(2) The k-means algorithm

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

  假设有k个群组Si, i=1,2,...,k。μi是群组Si内所有元素xj的重心,或叫中心点。
  k平均聚类发明于1956年, 该算法最常见的形式是采用被称为劳埃德算法(Lloyd algorithm)的迭代式改进探索法。劳埃德算法首先把输入点分成k个初始化分组,可以是随机的或者使用一些启发式数据。然后计算每组的中心点,根据 中心点的位置把对象分到离它最近的中心,重新确定分组。继续重复不断地计算中心并重新分组,直到收敛,即对象不再改变分组(中心点位置不再改变)。
  劳埃德算法和k平均通常是紧密联系的,但是在实际应用中,劳埃德算法是解决k平均问题的启发式法则,对于某些起始点和重心的组合,劳埃德算法可能实际上收敛于错误的结果。(上面函数中存在的不同的最优解)
  虽然存在变异,但是劳埃德算法仍旧保持流行,因为它在实际中收敛非常快。实际上,观察发现迭代次数远远少于点的数量。然而最近,David Arthur和Sergei Vassilvitskii提出存在特定的点集使得k平均算法花费超多项式时间达到收敛。
  近似的k平均算法已经被设计用于原始数据子集的计算。
  从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。
  k平均算法的一个缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。另外,算法还假设均方误差是计算群组分散度的最佳参数。

#Something about the data mining 数据挖掘(Data mining):是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器 学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 数据分析十大经典算法: 1.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。 2.C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是 ID3 算法。 3. Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes) 4. K-means 算法:是一种聚类算法 5. SVM:一种监督式学习方法,广泛应用于统计分类以及回归分析中 6.CART:分类与回归树,下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝 7. KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。 8. Pagerank:是 google 算法的重要内容。 9. adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。 10. EM:最大期望值法。 注意:十大算法大概分类: KNN,决策树(以 C4.5)为例,SVM,AdaBoost,CART,Naive Bayes 都是分类作为目的的算法K-means 是最常见的聚类算法;Apiori 是关联规则挖掘算法;EM 是一种概率模型参数的算 法;PageRank 是一种链接分析的算法,主要用于图数据里,对结点重要性进行排名.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值